Serum Cytokine Profile in a Patient Diagnosed with Dysferlinopathy

Svetlana F Khaiboullina, Ekaterina V Martynova, Sergey N Bardakov, Mikhail O Mavlikeev, Ivan A Yakovlev, Arthur A Isaev, Roman V Deev, Albert A Rizvanov, Svetlana F Khaiboullina, Ekaterina V Martynova, Sergey N Bardakov, Mikhail O Mavlikeev, Ivan A Yakovlev, Arthur A Isaev, Roman V Deev, Albert A Rizvanov

Abstract

Limb-girdle muscular dystrophy type 2 (LGMD2B) is a mild form of dysferlinopathy, characterized by limb weakness and wasting. It is an autosomal recessive disease, with currently 140 mutations in the LGMD2B gene identified. Lack of functional dysferlin inhibits muscle fiber regeneration in voluntary muscles, the main pathological finding in LGMD2B patients. However, the immune system has been suggested to contribute to muscle cell death and tissue regeneration. Serum levels of 27 cytokines were evaluated in a dysferlinopathy patient. Levels of 8 cytokines differed in patient serum compared to controls. Five cytokines (IL-10, IL-17, CCL2, CXCL10, and G-CSF) were higher while 3 were lower in the patient than in controls (IL-2, IL-8, and CCL11). Together, these data on serum cytokine profile of this dysferlinopathy patient suggest immune response activation, which could explain leukocyte infiltration in the muscle tissue.

Figures

Figure 1
Figure 1
Genealogy of Proband U (III:4). An arrow indicates the Proband: black, affected family member; white, healthy family member. I, II, III, and IV are generations within the Proband's family. III:1, manifestation at the age of 21 years (muscle weakness in the distal regions of the lower extremities). III:4, manifestation at the age of 26 years (muscle weakness in the posterior group of the lower leg muscles). IV:5, manifestation at the age of 21 years (muscle weakness in the distal regions of the lower extremities).

References

    1. Moore S. A., Shilling C. J., Westra S., et al. Limb-girdle muscular dystrophy in the United States. Journal of Neuropathology & Experimental Neurology. 2006;65(10):995–1003.
    1. McNally E. M., Ly C., Rosenmann H., et al. Splicing mutation in dysferlin produces limb-girdle muscular dystrophy with inflammation. American Journal of Medical Genetics. 2000;91(4):305–312. doi: 10.1002/(sici)1096-8628(20000410)91:4<305::aid-ajmg12>;2-s.
    1. Dalakas M. C. Pathogenesis and therapies of immune-mediated myopathies. Autoimmunity Reviews. 2012;11(3):203–206. doi: 10.1016/j.autrev.2011.05.013.
    1. Dalakas M. C., Hohlfeld R. Polymyositis and dermatomyositis. The Lancet. 2003;362(9388):971–982. doi: 10.1016/s0140-6736(03)14368-1.
    1. Rawat R., Cohen T. V., Ampong B., et al. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. American Journal of Pathology. 2010;176(6):2891–2900. doi: 10.2353/ajpath.2010.090058.
    1. Lundberg I., Brengman J. M., Engel A. G. Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. Journal of Neuroimmunology. 1995;63(1):9–16. doi: 10.1016/0165-5728(95)00122-0.
    1. Lundberg I., Ulfgren A.-K., Nyberg P., Andersson U., Klareskog L. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis and Rheumatism. 1997;40(5):865–874. doi: 10.1002/art.1780400514.
    1. Page G., Chevrel G., Miossec P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interaction with chemokines and Th1 cytokine-producing cells. Arthritis and Rheumatism. 2004;50(1):199–208. doi: 10.1002/art.11428.
    1. Lee Y., Awasthi A., Yosef N., et al. Induction and molecular signature of pathogenic TH17 cells. Nature Immunology. 2012;13(10):991–999. doi: 10.1038/ni.2416.
    1. Lehtonen A., Matikainen S., Miettinen M., Julkunen I. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation. Journal of Leukocyte Biology. 2002;71(3):511–519.
    1. Schroder T., Fuchss J., Schneider I., Stoltenburg-Didinger G., Hanisch F. Eosinophils in hereditary and inflammatory myopathies. Acta Myologica. 2013;32(3):148–153.
    1. Palframan R. T., Collins P. D., Williams T. J., Rankin S. M. Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood. 1998;91(7):2240–2248.
    1. Rothenberg M. E., Ownbey R., Mehlhop P. D., et al. Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Molecular Medicine. 1996;2(3):334–348.
    1. Alam R., Stafford S., Forsythe P., et al. RANTES is a chemotactic and activating factor for human eosinophils. Journal of Immunology. 1993;150(8, part 1):3442–3448.
    1. Warringa R. A. J., Koenderman L., Kok P. T. M., Kruekniet J., Bruijnzeel P. L. B. Modulation and induction of eosinophil chemotaxis by granulocyte-macrophage colony-stimulating factor and interleukin-3. Blood. 1991;77(12):2694–2700.
    1. Venge J., Lampinen M., Håkansson L., Rak S., Venge P. Identification of IL-5 and RANTES as the major eosinophil chemoattractants in the asthmatic lung. Journal of Allergy and Clinical Immunology. 1996;97(5):1110–1115. doi: 10.1016/S0091-6749(96)70265-8.
    1. Van Weel V., Deckers M. M. L., Grimbergen J. M., et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circulation Research. 2004;95(1):58–66. doi: 10.1161/01.RES.0000133247.69803.c3.
    1. Mackenzie F., Ruhrberg C. Diverse roles for VEGF-A in the nervous system. Development. 2012;139(8):1371–1380. doi: 10.1242/dev.072348.
    1. Boyman O., Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews Immunology. 2012;12(3):180–190. doi: 10.1038/nri3156.
    1. Liao W., Lin J.-X., Leonard W. J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current Opinion in Immunology. 2011;23(5):598–604. doi: 10.1016/j.coi.2011.08.003.

Source: PubMed

3
Iratkozz fel