Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria

Carine Van Malderen, Jean-Pierre Van Geertruyden, Sonia Machevo, Raquel González, Quique Bassat, Ambrose Talisuna, Adoke Yeka, Carolyn Nabasumba, Patrice Piola, Atwine Daniel, Eleanor Turyakira, Pascale Forret, Chantal Van Overmeir, Harry van Loen, Annie Robert, Umberto D' Alessandro, Carine Van Malderen, Jean-Pierre Van Geertruyden, Sonia Machevo, Raquel González, Quique Bassat, Ambrose Talisuna, Adoke Yeka, Carolyn Nabasumba, Patrice Piola, Atwine Daniel, Eleanor Turyakira, Pascale Forret, Chantal Van Overmeir, Harry van Loen, Annie Robert, Umberto D' Alessandro

Abstract

Background: Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children<5 years of age with uncomplicated malaria.

Methods: This case-control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model.

Results: G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p=0.56). The risk of a Hb drop≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p=0.76) or CDA treatment (AOR: 1.28; p=0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p=0.25) of experiencing a Hb drop≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals, haemolytic anaemia occurred more frequently in children treated with CDA (56%) than in those treated with other ACT (29%), though the difference was not significant (p=0.49).

Conclusion: The use of CDA for treating uncomplicated malaria may increase the risk of haemolytic anaemia in G6PD-deficient children.

Figures

Figure 1
Figure 1
Proportion of children with a Hb drop ≥2 g/dl (cases) across G6PD status and treatment groups. CDA = chlorproguanil-dapsone + artesunate. Other ACT = artemether-lumefantrine, dihydroartemisinin-piperaquine, amodiaquine-artesunate.

References

    1. Tiono AB, Dicko A, Ndububa DA, Agbenyega T, Pitmang S, Awobusuyi J, Pamba A, Duparc S, Goh LE, Harrell E, Carter N, Ward SA, Greenwood B, Winstanley PA. Chlorproguanil-dapsone-artesunate versus chlorproguanil-dapsone: a randomized, double-blind, phase III trial in African children, adolescents, and adults with uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg. 2009;81:969–978. doi: 10.4269/ajtmh.2009.09-0351.
    1. Alloueche A, Bailey W, Barton S, Bwika J, Chimpeni P, Falade CO, Fehintola FA, Horton J, Jaffar S, Kanyok T, Kremsner PG, Kublin JG, Lang T, Missinou MA, Mkandala C, Oduola AM, Premji Z, Robertson L, Sowunmi A, Ward SA, Winstanley PA. Comparison of chlorproguanil-dapsone with sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in young African children: double-blind randomised controlled trial. Lancet. 2004;363:1843–1848. doi: 10.1016/S0140-6736(04)16350-2.
    1. Mutabingwa T, Nzila A, Mberu E, Nduati E, Winstanley P, Hills E, Watkins W. Chlorproguanil-dapsone for treatment of drug-resistant falciparum malaria in Tanzania. Lancet. 2001;358:1218–1223. doi: 10.1016/S0140-6736(01)06344-9.
    1. Looareesuwan S, Imwong M, Wilairatana P. Chlorproguanil-dapsone for malaria in Africa. Lancet. 2004;363:1838–1839. doi: 10.1016/S0140-6736(04)16390-3.
    1. Premji Z, Umeh RE, Owusu-Agyei S, Esamai F, Ezedinachi EU, Oguche S, Borrmann S, Sowunmi A, Duparc S, Kirby PL, Pamba A, Kellam L, Guiguemdé R, Greenwood B, Ward SA, Winstanley PA. Chlorproguanil-dapsone-artesunate versus artemether-lumefantrine: a randomized, double-blind phase III trial in African children and adolescents with uncomplicated Plasmodium falciparum malaria. PLoS One. 2009;4:e6682. doi: 10.1371/journal.pone.0006682.
    1. World Health Organization. Antimalarial chlorproguanil-dapsone (LapDapTM) withdrawn following demonstration of post-treatment haemolytic anaemia in G6PD deficient patients in a Phase III trial of chlorproguanil-dapsone-artesunate (DacartTM) versus artemether-lumefantrine (Coartem) and confirmation of findings in a comparative trial of LapDapTM versus DacartTM. WHO, Switzerland; 2008.
    1. Carrazza MZ, Carrazza FR, Oga S. Clinical and laboratory parameters in dapsone acute intoxication. Rev Saude Publica. 2000;34:396–401. doi: 10.1590/S0034-89102000000400013.
    1. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74. doi: 10.1016/S0140-6736(08)60073-2.
    1. Beutler E. G6PD deficiency. Blood. 1994;84:3613–3636.
    1. Saunders MA, Slatkin M, Garner C, Hammer MF, Nachman MW. The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics. 2005;171:1219–1229. doi: 10.1534/genetics.105.048140.
    1. Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev. 2007;21:267–283. doi: 10.1016/j.blre.2007.05.002.
    1. Ruwende C, Hill A. Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med. 1998;76:581–588. doi: 10.1007/s001090050253.
    1. Jalloh A, Jalloh M, Gamanga I, Baion D, Sahr F, Gbakima A, Willoughby VR, Matsuoka H. G6PD deficiency assessment in Freetown, Sierra Leone, reveals further insight into the molecular heterogeneity of G6PD A- J Hum Genet. 2008;53:675–679. doi: 10.1007/s10038-008-0294-y.
    1. Beutler E, Duparc S. G6PD Deficiency Working Group. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development. Am J Trop Med Hyg. 2007;77:779–789.
    1. .
    1. The Four Artemisinin-Based Combinations (4ABC) group. A head-to-head comparison of four artemisinin-based combinations for treating uncomplicated malaria in African children: a randomized trial. PLoS Med. 2011;8:e1001119. doi: 10.1371/journal.pmed.1001119.
    1. World Health Organization. Severe and complicated malaria. Trans R Soc Trop Med Hyg. 1990;84:S1–S65.
    1. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–568.
    1. Mockenhaupt FP, Mandelkow J, Till H, Ehrhardt S, Eggelte TA, Bienzle U. Reduced prevalence of Plasmodium falciparum infection and of concomitant anaemia in pregnant women with heterozygous G6PD deficiency. Trop Med Int Health. 2003;8:118–124. doi: 10.1046/j.1365-3156.2003.01008.x.
    1. Kotea R, Kaeda JS, Yan SL, Sem Fa N, Beesoon S, Jankee S, Ramasawmy R, Vulliamy T, Bradnock RW, Bautista J, Luzzatto L, Krishnamoorthy R, Mason PJ. Three major G6PD-deficient polymorphic variants identified among the Mauritian population. Br J Haematol. 1999;104:849–854. doi: 10.1046/j.1365-2141.1999.01230.x.
    1. Fanello CI, Karema C, Ngamije D, Uwimana A, Ndahindwa V, Van Overmeir C, Van Doren W, Curtis J, D'Alessandro U. A randomised trial to assess the efficacy and safety of chlorproguanil/dapsone + artesunate for the treatment of uncomplicated Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 2008;102:412–420. doi: 10.1016/j.trstmh.2008.01.013.
    1. Fanello CI, Karema C, Avellino P, Bancone G, Uwimana A, Lee SJ, d'Alessandro U, Modiano D. High risk of severe anaemia after chlorproguanil-dapsone + artesunate antimalarial treatment in patients with G6PD (A-) deficiency. PLoS One. 2008;3:e4031. doi: 10.1371/journal.pone.0004031.
    1. De Araujo C, Migot-Nabias F, Guitard J, Pelleau S, Vulliamy T, Ducrocq R. The role of the G6PD AEth376G/968 C allele in glucose-6-phosphate dehydrogenase deficiency in the seerer population of Senegal. Haematologica. 2006;91:262–263.
    1. Wootton DG, Opara H, Biagini GA, Kanjala MK, Duparc S, Kirby PL, Woessner M, Neate C, Nyirenda M, Blencowe H, Dube-Mbeye Q, Kanyok T, Ward S, Molyneux M, Dunyo S, Winstanley PA. Open-label comparative clinical study of chlorproguanil-dapsone fixed dose combination (Lapdap) alone or with three different doses of artesunate for uncomplicated Plasmodium falciparum malaria. PLoS One. 2008;3:1779. doi: 10.1371/journal.pone.0001779.
    1. Nieuwenhuis F, Wolf B, Bomba A, De Graaf P. Haematological study in Cabo Delgado province, Mozambique; sickle cell trait and G6PD deficiency. Trop Geogr Med. 1986;38:183–187.
    1. Parikh S, Dorsey G, Rosenthal PJ. Host polymorphisms and the incidence of malaria in Ugandan children. Am J Trop Med Hyg. 2004;71:750–753.
    1. Beutler E, Mitchell M. Special modifications of the fluorescent screening method for glucose-6-phosphate dehydrogenase deficiency. Blood. 1968;32:816–818.
    1. Meissner PE, Coulibaly B, Mandi G, Mansmann U, Witte S, Schiek W, Müller O, Schirmer RH, Mockenhaupt FP, Bienzle U. Diagnosis of red cell G6PD deficiency in rural Burkina Faso: comparison of a rapid fluorescent enzyme test on filter paper with polymerase chain reaction based genotyping. Br J Haematol. 2005;131:395–399. doi: 10.1111/j.1365-2141.2005.05778.x.
    1. Bardsley B, Barry SJ, Drozdz MA, Hancock SA, Okafo GN, Szafran MM. Formation and identification of a degradant in chlorproguanil-dapsone-artesunate (Dacart™) tablets. J Pharm Biomed Anal. 2011;54:610–613. doi: 10.1016/j.jpba.2010.09.033.
    1. Ochong E, Bell DJ, Johnson DJ, D'Alessandro U, Mulenga M, Muangnoicharoen S, Van Geertruyden JP, Winstanley PA, Bray PG, Ward SA, Owen A. Plasmodium falciparum strains harboring dihydrofolate reductase with the I164L mutation are absent in Malawi and Zambia even under antifolate drug pressure. Antimicrob Agents Chemother. 2008;52:3883–3888. doi: 10.1128/AAC.00431-08.
    1. Krudsood S, Imwong M, Wilairatana P, Pukrittayakamee S, Nonprasert A, Snounou G, White NJ, Looareesuwan S. Artesunate-dapsone-proguanil treatment of falciparum malaria: genotypic determinants of therapeutic response. Trans R Soc Trop Med Hyg. 2005;99:142–149. doi: 10.1016/j.trstmh.2004.07.001.

Source: PubMed

3
Iratkozz fel