Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes

Christoph Nowak, Axel C Carlsson, Carl Johan Östgren, Fredrik H Nyström, Moudud Alam, Tobias Feldreich, Johan Sundström, Juan-Jesus Carrero, Jerzy Leppert, Pär Hedberg, Egil Henriksen, Antonio C Cordeiro, Vilmantas Giedraitis, Lars Lind, Erik Ingelsson, Tove Fall, Johan Ärnlöv, Christoph Nowak, Axel C Carlsson, Carl Johan Östgren, Fredrik H Nyström, Moudud Alam, Tobias Feldreich, Johan Sundström, Juan-Jesus Carrero, Jerzy Leppert, Pär Hedberg, Egil Henriksen, Antonio C Cordeiro, Vilmantas Giedraitis, Lars Lind, Erik Ingelsson, Tove Fall, Johan Ärnlöv

Abstract

Aims/hypothesis: Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes.

Methods: We combined data from six prospective epidemiological studies of 30-77-year-old individuals with type 2 diabetes in whom 80 circulating proteins were measured by proximity extension assay. Multivariable-adjusted Cox regression was used in a discovery/replication design to identify biomarkers for incident MACE. We used gradient-boosted machine learning and lasso regularised Cox regression in a random 75% training subsample to assess whether adding proteins to risk factors included in the Swedish National Diabetes Register risk model would improve the prediction of MACE in the separate 25% test subsample.

Results: Of 1211 adults with type 2 diabetes (32% women), 211 experienced a MACE over a mean (±SD) of 6.4 ± 2.3 years. We replicated associations (<5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay to established risk factors improved discrimination in the separate test sample from 0.686 (95% CI 0.682, 0.689) to 0.748 (95% CI 0.746, 0.751). A sparse model of 20 added proteins achieved a C statistic of 0.747 (95% CI 0.653, 0.842) in the test sample.

Conclusions/interpretation: We identified eight protein biomarkers, four of which are novel, for risk of MACE in community residents with type 2 diabetes, and found improved risk prediction by combining multiplex proteomics with an established risk model. Multiprotein arrays could be useful in identifying individuals with type 2 diabetes who are at highest risk of a cardiovascular event.

Keywords: Biomarkers; Major adverse cardiovascular event; Proteomics; Risk; Type 2 diabetes.

Conflict of interest statement

EI is a scientific advisor for Olink Proteomics for projects unrelated to the present study. The company had no influence over the design, analysis or interpretation of data in the present study, and did not provide any funding for the study. JÄ has received lecturing fees from AstraZeneca unrelated to the present project. The authors report that there are no other duality of interests associated with their contribution to this manuscript.

Figures

Fig. 1
Fig. 1
Study flowchart showing (a) cohorts and (b) further details of the analysis. The combined analysis was adjusted for: sex, current smoking, duration of type 2 diabetes (T2D), BMI, systolic BP, HbA1c, LDL-cholesterol, microalbuminuria, statin use, previous cardiovascular disease (CVD), atrial fibrillation and eGFR. NDR predictors were: age of onset of T2D, T2D duration, total cholesterol/HDL-cholesterol, HbA1c, systolic BP, BMI, sex, current smoking, microalbuminuria, macroalbuminuria, atrial fibrillation and previous CVD. PH, proportional hazards
Fig. 2
Fig. 2
Associations between replicated biomarkers and risk of MACE. Cox regression results in the total sample (n = 1211) are given as HR per SD increase in baseline protein levels (error bars denote 95% CIs), and plotted on a log scale. Adjustment for age and sex (black symbols and numbers) is compared with additional adjustment for atrial fibrillation, BMI, HbA1c, LDL-cholesterol, microalbuminuria, systolic blood pressure, smoking, statin use, duration of type 2 diabetes, history of cardiovascular disease and eGFR (grey symbols and numbers)

References

    1. International Diabetes Federation . IDF Diabetes Atlas. 8. Brussels: International Diabetes Federation; 2017.
    1. Gregg EW, Zhuo X, Cheng YJ, Albright AL, Narayan KMV, Thompson TJ. Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985 to 2011: a modelling study. Lancet Diabetes Endocrinol. 2014;2:867–874. doi: 10.1016/S2213-8587(14)70161-5.
    1. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–234. doi: 10.1056/NEJM199807233390404.
    1. Berry C, Tardif J-C, Bourassa MG. Coronary heart disease in patients with diabetes. J Am Coll Cardiol. 2007;49:631–642. doi: 10.1016/j.jacc.2006.09.046.
    1. Pierre-Louis B, Aronow WS, Palaniswamy C, et al. Obstructive coronary artery disease in high-risk diabetic patients with and without atrial fibrillation. Coron Artery Dis. 2009;20:91–93. doi: 10.1097/MCA.0b013e3283219e61.
    1. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–742. doi: 10.1016/S0140-6736(09)61965-6.
    1. Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–2153. doi: 10.1056/NEJMoa1604304.
    1. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–1509. doi: 10.1056/NEJMoa1500858.
    1. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925.
    1. Gandra SR, Villa G, Fonarow GC, et al. Cost-effectiveness of LDL-C lowering with evolocumab in patients with high cardiovascular risk in the United States. Clin Cardiol. 2016;39:313–320. doi: 10.1002/clc.22535.
    1. Korman M, Wisloff T. Modelling the cost-effectiveness PCSK9 inhibitors vs. ezetimibe through LDL-C reductions in a Norwegian setting. Eur Heart Journal Cardiovasc Pharmacother. 2018;4:15–22. doi: 10.1093/ehjcvp/pvx010.
    1. Muntner P, Whelton PK. Using predicted cardiovascular disease risk in conjunction with blood pressure to guide antihypertensive medication treatment. J Am Coll Cardiol. 2017;69:2446–2456. doi: 10.1016/j.jacc.2017.02.066.
    1. Zethelius B, Eliasson B, Eeg-Olofsson K, Svensson AM, Gudbjornsdottir S, Cederholm J. A new model for 5-year risk of cardiovascular disease in type 2 diabetes, from the Swedish National Diabetes Register (NDR) Diabetes Res Clin Pract. 2011;93:276–284. doi: 10.1016/j.diabres.2011.05.037.
    1. Schiele F, Ecarnot F, Chopard R. Coronary artery disease: risk stratification and patient selection for more aggressive secondary prevention. Eur J Prev Cardiol. 2017;24:88–100. doi: 10.1177/2047487317706586.
    1. Hoefer IE, Steffens S, Ala-Korpela M, et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J. 2015;36:2635–2642. doi: 10.1093/eurheartj/ehv236.
    1. Nowak C, Sundstrom J, Gustafsson S, et al. Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes. 2016;65:276–284.
    1. Goncalves I, Bengtsson E, Colhoun HM, et al. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2015;35:1723–1731. doi: 10.1161/ATVBAHA.115.305631.
    1. Ljungberg J, Janiec M, Bergdahl IA et al (2018) Proteomic biomarkers for incident aortic stenosis requiring valvular replacement. Circulation 10.1161/CIRCULATIONAHA.117.030414
    1. Looker HC, Colombo M, Agakov F, et al. Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes. Diabetologia. 2015;58:1363–1371. doi: 10.1007/s00125-015-3535-6.
    1. Dahlen EM, Lanne T, Engvall J, et al. Carotid intima-media thickness and apolipoprotein B/apolipoprotein A-I ratio in middle-aged patients with type 2 diabetes. Diabet Med. 2009;26:384–390. doi: 10.1111/j.1464-5491.2009.02693.x.
    1. Lind L, Fors N, Hall J, Marttala K, Stenborg A. A comparison of three different methods to determine arterial compliance in the elderly: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. J Hypertens. 2006;24:1075–1082. doi: 10.1097/01.hjh.0000226197.67052.89.
    1. Hedstrand H. A study of middle-aged men with particular reference to risk factors for cardiovascular disease. Upps J Med Sci Suppl. 1975;19:1–61.
    1. Hedberg P, Hammar C, Selmeryd J, et al. Left ventricular systolic dysfunction in outpatients with peripheral atherosclerotic vascular disease: prevalence and association with location of arterial disease. Eur J Heart Fail. 2014;16:625–632. doi: 10.1002/ejhf.95.
    1. Cordeiro AC, Lindholm B, Sousa MG, et al. Reliability of electrocardiographic surrogates of left ventricular mass in patients with chronic kidney disease. J Hypertens. 2014;32:439–445. doi: 10.1097/HJH.0000000000000026.
    1. World Health Organization (2007) Prevention of cardiovascular disease. Guidelines for assessment and management of cardiovascular risk. Geneva: WHO
    1. Socialstyrelsen (2017) Nationella riktlinjer för diabetesvård. Stöd för styrning och ledning. Stockholm: Socialstyrelsen
    1. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002;38:367–378. doi: 10.1016/S0167-9473(01)00065-2.
    1. Tunon J, Fernandez-Fernandez B, Carda R, et al. Circulating fibroblast growth factor-23 plasma levels predict adverse cardiovascular outcomes in patients with diabetes mellitus with coronary artery disease. Diabetes Metab Res Rev. 2016;32:685–693. doi: 10.1002/dmrr.2787.
    1. Carlsson AC, Ostgren CJ, Nystrom FH, et al. Association of soluble tumor necrosis factor receptors 1 and 2 with nephropathy, cardiovascular events, and total mortality in type 2 diabetes. Cardiovasc Diabetol. 2016;15:40. doi: 10.1186/s12933-016-0359-8.
    1. Brahimaj A, Ligthart S, Ghanbari M, et al. Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: the Rotterdam Study. Eur J Epidemiol. 2017;32:217–226. doi: 10.1007/s10654-017-0236-0.
    1. Ligthart S, Sedaghat S, Ikram MA, Hofman A, Franco OH, Dehghan A. EN-RAGE: a novel inflammatory marker for incident coronary heart disease. Arterioscler Thromb Vasc Biol. 2014;34:2695–2699. doi: 10.1161/ATVBAHA.114.304306.
    1. Hofmann Bowman M, Wilk J, Heydemann A, et al. S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ Res. 2010;106:145–154. doi: 10.1161/CIRCRESAHA.109.209486.
    1. Coca SG, Nadkarni GN, Huang Y, et al. Plasma biomarkers and kidney function decline in early and established diabetic kidney disease. J Am Soc Nephrol. 2017;28:2786–2793. doi: 10.1681/ASN.2016101101.
    1. Nowak N, Skupien J, Smiles AM, et al. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic test development. Kidney Int. 2018;93:1198–1206. doi: 10.1016/j.kint.2017.11.024.
    1. Egli P, Aeschbacher S, Bossard M, et al. Relationships of kidney injury molecule-1 with renal function and cardiovascular risk factors in the general population. Clin Chim Acta. 2018;478:13–17. doi: 10.1016/j.cca.2017.12.019.
    1. Pan X, Pang M, Ma A, et al. Association of TRAIL and its receptors with large-artery atherosclerotic Stroke. PLoS One. 2015;10:e0136414. doi: 10.1371/journal.pone.0136414.
    1. Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol. 2017;24:1576–1583. doi: 10.1177/2047487317725017.
    1. Pang J, Poulter EB, Bell DA, et al. Frequency of familial hypercholesterolemia in patients with early-onset coronary artery disease admitted to a coronary care unit. J Clin Lipidol. 2015;9:703–708. doi: 10.1016/j.jacl.2015.07.005.
    1. Voruganti VS, Cole SA, Ebbesson SO, et al. Genetic variation in APOJ, LPL, and TNFRSF10B affects plasma fatty acid distribution in Alaskan Eskimos. Am J Clin Nutr. 2010;91:1574–1583. doi: 10.3945/ajcn.2009.28927.
    1. Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417–443. doi: 10.1146/annurev-immunol-032414-112134.
    1. Wang R, Han G, Wang J, et al. The pathogenic role of interleukin-27 in autoimmune diabetes. Cell Mol Life Sci. 2008;65:3851–3860. doi: 10.1007/s00018-008-8540-1.
    1. Hirase T, Hara H, Miyazaki Y, et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Phys Heart Circ Phys. 2013;305:H420–H429.
    1. Fan Q, Nie S, Li S, et al. Analysis of the genetic association between IL27 variants and coronary artery disease in a Chinese Han population. Sci Rep. 2016;6:25782. doi: 10.1038/srep25782.
    1. Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med. 2017;377:62–70. doi: 10.1056/NEJMra1510062.
    1. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115:928–935. doi: 10.1161/CIRCULATIONAHA.106.672402.

Source: PubMed

3
Iratkozz fel