Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study

Robert Molokie, Donald Lavelle, Michel Gowhari, Michael Pacini, Lani Krauz, Johara Hassan, Vinzon Ibanez, Maria A Ruiz, Kwok Peng Ng, Philip Woost, Tomas Radivoyevitch, Daisy Pacelli, Sherry Fada, Matthew Rump, Matthew Hsieh, John F Tisdale, James Jacobberger, Mitch Phelps, James Douglas Engel, Santhosh Saraf, Lewis L Hsu, Victor Gordeuk, Joseph DeSimone, Yogen Saunthararajah, Robert Molokie, Donald Lavelle, Michel Gowhari, Michael Pacini, Lani Krauz, Johara Hassan, Vinzon Ibanez, Maria A Ruiz, Kwok Peng Ng, Philip Woost, Tomas Radivoyevitch, Daisy Pacelli, Sherry Fada, Matthew Rump, Matthew Hsieh, John F Tisdale, James Jacobberger, Mitch Phelps, James Douglas Engel, Santhosh Saraf, Lewis L Hsu, Victor Gordeuk, Joseph DeSimone, Yogen Saunthararajah

Abstract

Background: Sickle cell disease (SCD), a congenital hemolytic anemia that exacts terrible global morbidity and mortality, is driven by polymerization of mutated sickle hemoglobin (HbS) in red blood cells (RBCs). Fetal hemoglobin (HbF) interferes with this polymerization, but HbF is epigenetically silenced from infancy onward by DNA methyltransferase 1 (DNMT1).

Methods and findings: To pharmacologically re-induce HbF by DNMT1 inhibition, this first-in-human clinical trial (NCT01685515) combined 2 small molecules-decitabine to deplete DNMT1 and tetrahydrouridine (THU) to inhibit cytidine deaminase (CDA), the enzyme that otherwise rapidly deaminates/inactivates decitabine, severely limiting its half-life, tissue distribution, and oral bioavailability. Oral decitabine doses, administered after oral THU 10 mg/kg, were escalated from a very low starting level (0.01, 0.02, 0.04, 0.08, or 0.16 mg/kg) to identify minimal doses active in depleting DNMT1 without cytotoxicity. Patients were SCD adults at risk of early death despite standard-of-care, randomized 3:2 to THU-decitabine versus placebo in 5 cohorts of 5 patients treated 2X/week for 8 weeks, with 4 weeks of follow-up. The primary endpoint was ≥ grade 3 non-hematologic toxicity. This endpoint was not triggered, and adverse events (AEs) were not significantly different in THU-decitabine-versus placebo-treated patients. At the decitabine 0.16 mg/kg dose, plasma concentrations peaked at approximately 50 nM (Cmax) and remained elevated for several hours. This dose decreased DNMT1 protein in peripheral blood mononuclear cells by >75% and repetitive element CpG methylation by approximately 10%, and increased HbF by 4%-9% (P < 0.001), doubling fetal hemoglobin-enriched red blood cells (F-cells) up to approximately 80% of total RBCs. Total hemoglobin increased by 1.2-1.9 g/dL (P = 0.01) as reticulocytes simultaneously decreased; that is, better quality and efficiency of HbF-enriched erythropoiesis elevated hemoglobin using fewer reticulocytes. Also indicating better RBC quality, biomarkers of hemolysis, thrombophilia, and inflammation (LDH, bilirubin, D-dimer, C-reactive protein [CRP]) improved. As expected with non-cytotoxic DNMT1-depletion, platelets increased and neutrophils concurrently decreased, but not to an extent requiring treatment holds. As an early phase study, limitations include small patient numbers at each dose level and narrow capacity to evaluate clinical benefits.

Conclusion: Administration of oral THU-decitabine to patients with SCD was safe in this study and, by targeting DNMT1, upregulated HbF in RBCs. Further studies should investigate clinical benefits and potential harms not identified to date.

Trial registration: ClinicalTrials.gov, NCT01685515.

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: DL, JD, and YS have patent applications around decitabine and around the combination of tetrahydrouridine and decitabine. In addition, JD and YS are consultants to EpiDestiny, that has licensed oral THU-decitabine for development as a treatment for sickle cell disease. EpiDestiny did not fund this clinical trial, and had no role in the study design, collection or analysis of the data, preparation of the manuscript, or the decision to publish. None of the authors have received any payments related to conduct of this clinical trial.

Figures

Fig 1. Fetal hemoglobin (HbF) blocks polymerization…
Fig 1. Fetal hemoglobin (HbF) blocks polymerization of deoxy sickle hemoglobin (HbS), the root cause of sickle cell disease (SCD) pathophysiology, and is the most powerful known disease modifier.
(A) Polymerization of deoxy HbS drives all SCD pathophysiology; In contrast to HbF, normal adult hemoglobin (HbA, ẞ-chains) can participate in polymerization. (B) The gene for HbF (HBG) is silenced by DNA methyltransferase 1 (DNMT1). Although DNA-binding factors, e.g., BCL11A, direct this silencing, the biochemical work of epigenetic repression is executed by chromatin-modifying enzymes, amongst which DNMT1 is central. Decitabine depletes DNMT1 and can do so without cytotoxicity because in contrast to other cytidine analogues (e.g., cytarabine) the deoxyribose moiety (green dotted circle) is natural, although higher concentrations do cause anti-metabolite effects and DNA damage, in part by degradation into uridine counterparts that misincorporate into DNA. (C) Several pharmacologic limitations of decitabine hinder safe, effective, practical clinical translation. The limitations have a common cause, the enzyme cytidine deaminase (CDA). Tetrahydrouridine (THU) inhibits CDA. No toxicities have been found for THU in animals or humans.
Fig 2. Design rationale, schema, flow, and…
Fig 2. Design rationale, schema, flow, and patient characteristics.
(A) Decitabine regimens approved by the US Food and Drug Administration (FDA) to treat myeloid malignancy utilize cytotoxic decitabine doses (red zone), requiring pulse-cycled administration to recover from cytotoxic side effects. This clinical trial instead escalated oral decitabine doses from almost zero (0.01 mg/kg) gradually upward to find the minimum doses required to deplete DNA methyltransferase 1 (DNMT1) without cytotoxicity (green zone) when administered after oral tetrahydrouridine (THU) 10 mg/kg. Because such doses are non-cytotoxic, they can be administered frequently in distributed fashion to increase the fraction of target cells subject to S-phase–dependent DNMT1 depletion. (B) The study schema. (C) Flow of patients through the trial. (D) Patient clinical characteristics at baseline. Abbreviations: ACS, acute chest syndrome; AVN, acute vascular necrosis; CVA, cerebral vascular accident; ED/Hosp, emergency department/hospital; PE/DVT, pulmonary embolus/deep vein thrombosis. (E) Patient demographics and baseline laboratory variables. Median and range showed for continuous variables. P values Wilcoxon ranked sums 2-tailed or Fisher exact test.
Fig 3. Adverse events (AEs).
Fig 3. Adverse events (AEs).
(A) AEs with possible relatedness to the study drug (AEs other than “unrelated”) per judgement of the treating clinical teams. (B) All grade 3 AEs occurring in study drug—and placebo-treated patients. These grade 3 AEs were sickle cell complications judged to be unrelated to the study drug by the treating clinical teams. (C) Statistical comparison of grade 3 AEs between placebo and decitabine dose-level patients. R function poisson.test(), an exact test, was used. Abbreviation: ED/Hosp, emergency department/hospital.
Fig 4. Adverse events (AEs) in placebo…
Fig 4. Adverse events (AEs) in placebo and decitabine dose-level patients (cohorts 1–5).
(A) All AEs as per Common Terminology Criteria for Adverse Events (CTCAE) v 4.0. There were no grade 4 AEs. (B) Statistical comparison of all pain AEs in drug-treated versus placebo cohorts. R function poisson.test(), an exact test, was used.
Fig 5. Pharmacokinetics (PK) and pharmacodynamics (PD)…
Fig 5. Pharmacokinetics (PK) and pharmacodynamics (PD) of oral tetrahydrouridine (THU)-decitabine.
(A) Decitabine PK. Samples for PK analysis were obtained in 12 of the 15 patients who received the study drug. Times are listed in hours after administration of oral decitabine. Data points are measured values and curves are fits using the R package PKLMfit. The inset shows a close-up of hours 0–4. Decitabine was quantified by a validated liquid chromatography tandem mass spectrometry (LCMS/MS) method. (B) DNMT1 protein levels in peripheral blood mononuclear cells (PBMC) measured by flow cytometry in cohorts 4 and 5 (decitabine 0.08 mg/kb and 0.16 mg/kg, respectively) and in all placebo-treated patients. Analyses were blinded to treatment assignment. Shown are means of 2 independent measurements. (C) Methylation of long interspersed nuclear elements (LINE-1) repetitive element CpGs (3 individual CpGs) in PBMC in cohorts 4 and 5 placebo and drug-treated patients. Analyses were blinded to treatment assignment. Measurements were made by pyrosequencing. Shown are means of 2 independent measurements.
Fig 6. Fetal hemoglobin (HbF) induction in…
Fig 6. Fetal hemoglobin (HbF) induction in cohort 4 and 5 patients.
(A) HbF percentage (HbF%) over time in cohorts 4 and 5 (decitabine 0.08 mg/kg and 0.16 mg/kg, respectively) patients. (B) Statistical analysis of the rates of change in HbF% with increasing doses of decitabine (0 = placebo); P value determined by linear regression. (C) Change in HbF% from pretreatment to week 8 or 10. (D) Absolute HbF levels. (E) Proportion of red blood cells (RBCs) expressing high levels of HbF (F-cells) in cohort 4 and 5 patients. (F) Raw F-cell flow cytometry data for cohort 5 tetrahydrouridine (THU)-decitabine—and placebo-treated patients. Abbreviation: FS, forward scatter.
Fig 7. Blood counts and other parameters…
Fig 7. Blood counts and other parameters in cohort 4 (decitabine 0.08 mg/kg) and 5 (decitabine 0.16 mg/kg) tetrahydrouridine (THU)-decitabine–treated patients.
(A) Total hemoglobin. (B) Statistical analysis of the rates of change in total hemoglobin (Hbg) with increasing doses of decitabine (0 = placebo); P value determined by linear regression. (C) Absolute reticulocyte counts (ARC). (D, E) LDH and total bilirubin. These are biomarkers of hemolysis. (F) D-dimer. A biomarker of coagulation activation. (G) C-reactive protein (CRP). A biomarker of inflammation. (H) Platelets. (I) Absolute neutrophil counts (ANC).

References

    1. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330: 1639–1644. doi:
    1. Lanzkron S, Carroll CP, Haywood C Jr. (2013) Mortality rates and age at death from sickle cell disease: U.S., 1979–2005. Public Health Reports 128: 110–116. doi:
    1. Goldberg MA, Husson MA, Bunn HF (1977) Participation of hemoglobins A and F in polymerization of sickle hemoglobin. J Biol Chem 252: 3414–3421.
    1. Nagel RL, Bookchin RM, Johnson J, Labie D, Wajcman H, Isaac-Sodeye WA, et al. (1979) Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci U S A 76: 670–672.
    1. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, et al. (2011) Fetal hemoglobin in sickle cell anemia. Blood 118: 19–27. doi:
    1. Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, et al. (1991) Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325: 11–16. doi:
    1. Powars DR, Weiss JN, Chan LS, Schroeder WA (1984) Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 63: 921–926.
    1. Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, et al. (2003) Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 289: 1645–1651. doi:
    1. Atweh GF, Schechter AN (2001) Pharmacologic induction of fetal hemoglobin: raising the therapeutic bar in sickle cell disease. Curr Opin Hematol 8: 123–130.
    1. Powars DR, Elliott-Mills DD, Chan L, Niland J, Hiti AL, Opas LM, et al. (1991) Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med 115: 614–620.
    1. Lebensburger J, Johnson SM, Askenazi DJ, Rozario NL, Howard TH, Hilliard LM (2011) Protective role of hemoglobin and fetal hemoglobin in early kidney disease for children with sickle cell anemia. Am J Hematol 86: 430–432. doi:
    1. Aban I, Baddam S, Hilliard LM, Howard TH, Feig DI, Lebensburger JD (2017) Severe anemia early in life as a risk factor for sickle-cell kidney disease. Blood 129: 385–387. doi:
    1. Conley CL, Weatherall DJ, Richardson SN, Shepard MK, Charache S (1963) Hereditary persistence of fetal hemoglobin: a study of 79 affected persons in 15 Negro families in Baltimore. Blood 21: 261–281.
    1. Perrine RP, Pembrey ME, John P, Perrine S, Shoup F (1978) Natural history of sickle cell anemia in Saudi Arabs. A study of 270 subjects. Ann Intern Med 88: 1–6.
    1. Ngo DA, Aygun B, Akinsheye I, Hankins JS, Bhan I, Luo HY, et al. (2012) Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol 156: 259–264. doi:
    1. DeSimone J, Biel SI, Heller P (1978) Stimulation of fetal hemoglobin synthesis in baboons by hemolysis and hypoxia. Proc Natl Acad Sci U S A 75: 2937–2940.
    1. DeSimone J, Heller P, Adams JG (1979) Hemopoietic stress and fetal hemoglobin synthesis: comparative studies in vivo and in vitro. Blood 54: 1176–1181.
    1. DeSimone J, Heller P, Amsel J, Usman M (1980) Magnitude of the fetal hemoglobin response to acute hemolytic anemia in baboons is controlled by genetic factors. J Clin Invest 65: 224–226. doi:
    1. DeSimone J, Heller P, Biel M, Zwiers D (1981) Genetic relationship between fetal Hb levels in normal and erythropoietically stressed baboons. Br J Haematol 49: 175–183.
    1. DeSimone J, Biel M, Heller P (1982) Maintenance of fetal hemoglobin (HbF) elevations in the baboon by prolonged erythropoietic stress. Blood 60: 519–523.
    1. Lavelle D, DeSimone J, Heller P, Zwiers D, Hall L (1986) On the mechanism of Hb F elevations in the baboon by erythropoietic stress and pharmacologic manipulation. Blood 67: 1083–1089.
    1. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 332: 1317–1322. doi:
    1. Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ (1997) Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood 89: 1078–1088.
    1. Ballas SK, Marcolina MJ, Dover GJ, Barton FB (1999) Erythropoietic activity in patients with sickle cell anaemia before and after treatment with hydroxyurea. Br J Haematol 105: 491–496.
    1. Charache S, Dover GJ, Moore RD, Eckert S, Ballas SK, Koshy M, et al. (1992) Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia. Blood 79: 2555–2565.
    1. Ballas SK, Barton FB, Waclawiw MA, Swerdlow P, Eckman JR, Pegelow CH, et al. (2006) Hydroxyurea and sickle cell anemia: effect on quality of life. Health and Quality of Life Outcomes 4: 59 doi:
    1. Segal JB, Strouse JJ, Beach MC, Haywood C, Witkop C, Park H, et al. (2008) Hydroxyurea for the treatment of sickle cell disease. Evidence Report/technology Assessment: 1–95.
    1. Machado RF, Anthi A, Steinberg MH, Bonds D, Sachdev V, Kato GJ, et al. (2006) N-terminal pro-brain natriuretic peptide levels and risk of death in sickle cell disease. JAMA 296: 310–318. doi:
    1. Ware RE, Eggleston B, Redding-Lallinger R, Wang WC, Smith-Whitley K, Daeschner C, et al. (2002) Predictors of fetal hemoglobin response in children with sickle cell anemia receiving hydroxyurea therapy. Blood 99: 10–14.
    1. Green NS, Manwani D, Qureshi M, Ireland K, Sinha A, Smaldone AM (2016) Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatric Blood & Cancer 63: 2146–2153.
    1. West MS, Wethers D, Smith J, Steinberg M (1992) Laboratory profile of sickle cell disease: a cross-sectional analysis. The Cooperative Study of Sickle Cell Disease. J Clin Epidemiol 45: 893–909.
    1. Saraf S, Farooqui M, Infusino G, Oza B, Sidhwani S, Gowhari M, et al. (2011) Standard clinical practice underestimates the role and significance of erythropoietin deficiency in sickle cell disease. Br J Haematol 153: 386–392. doi:
    1. van der Ploeg LH, Flavell RA (1980) DNA methylation in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues. Cell 19: 947–958.
    1. Mavilio F, Giampaolo A, Care A, Migliaccio G, Calandrini M, Russo G, et al. (1983) Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts. Proc Natl Acad Sci U S A 80: 6907–6911.
    1. Tagle DA, Koop BF, Goodman M, Slightom JL, Hess DL, Jones RT (1988) Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203: 439–455.
    1. DeSimone J, Heller P, Hall L, Zwiers D (1982) 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci U S A 79: 4428–4431.
    1. Ley TJ, DeSimone J, Anagnou NP, Keller GH, Humphries RK, Turner PH, et al. (1982) 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med 307: 1469–1475. doi:
    1. Ley TJ, DeSimone J, Noguchi CT, Turner PH, Schechter AN, Heller P, et al. (1983) 5-Azacytidine increases gamma-globin synthesis and reduces the proportion of dense cells in patients with sickle cell anemia. Blood 62: 370–380.
    1. Charache S, Dover G, Smith K, Talbot CC Jr., Moyer M, Boyer S (1983) Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci U S A 80: 4842–4846.
    1. Dover GJ, Charache S, Boyer SH, Vogelsang G, Moyer M (1985) 5-Azacytidine increases HbF production and reduces anemia in sickle cell disease: dose-response analysis of subcutaneous and oral dosage regimens. Blood 66: 527–532.
    1. Lowrey CH, Nienhuis AW (1993) Brief report: treatment with azacitidine of patients with end-stage beta-thalassemia. N Engl J Med 329: 845–848. doi:
    1. Koshy M, DeSimone J, Molokie R, Dorn L, van der Galien T, Bressler L (1998) Augmentation of fetal hemoglobin (HbF) levels by low-dose short-duration 5 '-aza-2-deoxycytidine (decitabine) administration in sickle cell anemia patients who had no HbF elevation following hydroxyurea therapy. Blood 92: 30b–30b.
    1. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, et al. (2003) Effects of 5-aza-2 '-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 102: 3865–3870. doi:
    1. Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, et al. (2013) Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci U S A 110: 6518–6523. doi:
    1. Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, et al. (2011) Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic beta-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 31: 3298–3311. doi:
    1. Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33: 9–10.
    1. Covey JM, D'Incalci M, Tilchen EJ, Zaharko DS, Kohn KW (1986) Differences in DNA damage produced by incorporation of 5-aza-2'-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells. Cancer Res 46: 5511–5517.
    1. Schermelleh L, Haemmer A, Spada F, Rosing N, Meilinger D, Rothbauer U, et al. (2007) Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res 35: 4301–4312. doi:
    1. Zauri M, Berridge G, Thezenas ML, Pugh KM, Goldin R, Kessler BM, et al. (2015) CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer. Nature 524: 114–118. doi:
    1. Almqvist H, Axelsson H, Jafari R, Dan C, Mateus A, Haraldsson M, et al. (2016) CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat Commun 7: 11040 doi:
    1. Olivieri NF, Saunthararajah Y, Thayalasuthan V, Kwiatkowski J, Ware RE, Kuypers FA, et al. (2011) A pilot study of subcutaneous decitabine in beta-thalassemia intermedia. Blood 118: 2708–2711. doi:
    1. Saunthararajah Y, Sekeres M, Advani A, Mahfouz R, Durkin L, Radivoyevitch T, et al. (2015) Evaluation of noncytotoxic DNMT1-depleting therapy in patients with myelodysplastic syndromes. J Clin Invest 125: 1043–1055. doi:
    1. Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y, et al. (2004) Modification of hematopoietic stem cell fate by 5aza 2 ' deoxycytidine and trichostatin A. Blood 103: 4102–4110. doi:
    1. Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q, et al. (2010) Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus. Mol Cancer Ther 9: 1536–1543. doi:
    1. DeSimone J, Koshy M, Dorn L, Lavelle D, Bressier L, Molokie R, et al. (2002) Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood 99: 3905–3908.
    1. Liu Z, Marcucci G, Byrd JC, Grever M, Xiao J, Chan KK (2006) Characterization of decomposition products and preclinical and low dose clinical pharmacokinetics of decitabine (5-aza-2'-deoxycytidine) by a new liquid chromatography/tandem mass spectrometry quantification method. Rapid Commun Mass Spectrom 20: 1117–1126. doi:
    1. Liu Z, Liu S, Xie Z, Blum W, Perrotti D, Paschka P, et al. (2007) Characterization of in vitro and in vivo hypomethylating effects of decitabine in acute myeloid leukemia by a rapid, specific and sensitive LC-MS/MS method. Nucleic Acids Res 35: e31 doi:
    1. Camiener GW, Smith CG (1965) Studies of the enzymatic deamination of cytosine arabinoside. I. Enzyme distribution and species specificity. Biochem Pharmacol 14: 1405–1416.
    1. Neil GL, Moxley TE, Kuentzel SL, Manak RC, Hanka LJ (1975) Enhancement by tetrahydrouridine (NSC-112907) of the oral activity of 5-azacytidine (NSC-102816) in L1210 leukemic mice. Cancer Chemother Rep 59: 459–465.
    1. DeSimone J, Heller P, Molokie RE, Hall L, Zwiers D (1985) Tetrahydrouridine, cytidine analogues, and hemoglobin F. Am J Hematol 18: 283–288.
    1. Beumer JH, Eiseman JL, Parise RA, Joseph E, Covey JM, Egorin MJ (2008) Modulation of gemcitabine (2',2'-difluoro-2'-deoxycytidine) pharmacokinetics, metabolism, and bioavailability in mice by 3,4,5,6-tetrahydrouridine. Clin Cancer Res 14: 3529–3535. doi:
    1. Ebrahem Q, Mahfouz R, Ng KP, Saunthararajah Y (2012) High cytidine deaminase expression in the liver provides sanctuary for cancer cells from decitabine treatment effects. Oncotarget 3: 1137–1145. doi:
    1. Riccardi R, Chabner B, Glaubiger DL, Wood J, Poplack DG (1982) Influence of tetrahydrouridine on the pharmacokinetics of intrathecally administered 1-beta-D-arabinofuranosylcytosine. Cancer Res 42: 1736–1739.
    1. Kreis W, Budman DR, Chan K, Allen SL, Schulman P, Lichtman S, et al. (1991) Therapy of refractory/relapsed acute leukemia with cytosine arabinoside plus tetrahydrouridine (an inhibitor of cytidine deaminase)—a pilot study. Leukemia 5: 991–998.
    1. Wong PP, Currie VE, Mackey RW, Krakoff IH, Tan CT, Burchenal JH, et al. (1979) Phase I evaluation of tetrahydrouridine combined with cytosine arabinoside. Cancer Treat Rep 63: 1245–1249.
    1. Ho DH, Bodey GP, Hall SW, Benjamin RS, Brown NS, Freireich EJ, et al. (1978) Clinica, pharmacology of tetrahydrouridine. J Clin Pharmacol 18: 259–265.
    1. Kreis W, Woodcock TM, Gordon CS, Krakoff IH (1977) Tetrahydrouridine: Physiologic disposition and effect upon deamination of cytosine arabinoside in man. Cancer Treat Rep 61: 1347–1353.
    1. Marsh JH, Kreis W, Barile B, Akerman S, Schulman P, Allen SL, et al. (1993) Therapy of refractory/relapsed acute myeloid leukemia and blast crisis of chronic myeloid leukemia with the combination of cytosine arabinoside, tetrahydrouridine, and carboplatin. Cancer Chemother Pharmacol 31: 481–484.
    1. Goldenthal EI, Cookson KM, Geil RG, Wazeter FX (1974) Preclinical toxicologic evaluation of tetrahydrouridine (NSC-112907) in beagle dogs and rhesus monkeys. Cancer Chemother Rep3 5: 15–16.
    1. Lavelle D, Vaitkus K, Ling Y, Ruiz MA, Mahfouz R, Ng KP, et al. (2012) Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine. Blood 119: 1240–1247. doi:
    1. Aparicio A, North B, Barske L, Wang X, Bollati V, Weisenberger D, et al. (2009) LINE-1 methylation in plasma DNA as a biomarker of activity of DNA methylation inhibitors in patients with solid tumors. Epigenetics 4: 176–184.
    1. Saunthararajah Y, Sekeres M, Advani A, Mahfouz R, Durkin L, Radivoyevitch T, et al. (2015) Evaluation of noncytotoxic DNMT1-depleting therapy in patients with myelodysplastic syndromes. J Clin Invest. 2;125(3):1043–55. doi:
    1. Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A 81: 6993–6997.
    1. Patel K, Dickson J, Din S, Macleod K, Jodrell D, Ramsahoye B (2010) Targeting of 5-aza-2'-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res 38: 4313–4324. doi:
    1. Creusot F, Acs G, Christman JK (1982) Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine. J Biol Chem 257: 2041–2048.
    1. Saunthararajah Y (2013) Key clinical observations after 5-azacytidine and decitabine treatment of myelodysplastic syndromes suggest practical solutions for better outcomes. Hematology Am Soc Hematol Educ Program 2013: 511–521. doi:
    1. Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, et al. (2006) Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12: 5777–5785. doi:
    1. Jansen RS, Rosing H, Wijermans PW, Keizer RJ, Schellens JH, Beijnen JH (2012) Decitabine triphosphate levels in peripheral blood mononuclear cells from patients receiving prolonged low-dose decitabine administration: a pilot study. Cancer Chemotherapy and Pharmacol 69: 1457–1466.
    1. Garcia-Manero G, Gore SD, Cogle C, Ward R, Shi T, Macbeth KJ, et al. (2011) Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol 29: 2521–2527. doi:
    1. Stewart DJ, Issa JP, Kurzrock R, Nunez MI, Jelinek J, Hong D, et al. (2009) Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 15: 3881–3888. doi:
    1. Fang F, Balch C, Schilder J, Breen T, Zhang S, Shen C, et al. (2010) A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 116: 4043–4053. doi:
    1. Goldschmidt N, Spectre G, Brill A, Zelig O, Goldfarb A, Rachmilewitz E, et al. (2008) Increased platelet adhesion under flow conditions is induced by both thalassemic platelets and red blood cells. Thrombosis and Haemostasis 100: 864–870.
    1. Zhang D, Xu C, Manwani D, Frenette PS (2016) Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127: 801–809. doi:
    1. Habib A, Kunzelmann C, Shamseddeen W, Zobairi F, Freyssinet JM, Taher A (2008) Elevated levels of circulating procoagulant microparticles in patients with beta-thalassemia intermedia. Haematologica 93: 941–942. doi:
    1. Gladwin MT, Kato GJ (2008) Hemolysis-associated hypercoagulability in sickle cell disease: the plot (and blood) thickens! Haematologica 93: 1–3. doi:
    1. Ataga KI, Moore CG, Hillery CA, Jones S, Whinna HC, Strayhorn D, et al. (2008) Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica 93: 20–26. doi:
    1. Whelihan MF, Zachary V, Orfeo T, Mann KG (2012) Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood 120: 3837–3845. doi:
    1. Ruf A, Pick M, Deutsch V, Patscheke H, Goldfarb A, Rachmilewitz EA, et al. (1997) In-vivo platelet activation correlates with red cell anionic phospholipid exposure in patients with beta-thalassaemia major. Br J Haematol 98: 51–56.
    1. Tripodi A, Cappellini MD, Chantarangkul V, Padovan L, Fasulo MR, Marcon A, et al. (2009) Hypercoagulability in splenectomized thalassemic patients detected by whole-blood thromboelastometry, but not by thrombin generation in platelet-poor plasma. Haematologica 94: 1520–1527. doi:
    1. Whelihan MF, Mooberry MJ, Zachary V, Bradford RL, Ataga KI, Mann KG, et al. (2013) The contribution of red blood cells to thrombin generation in sickle cell disease: meizothrombin generation on sickled red blood cells. J Thromb Haemost 11: 2187–2189. doi:
    1. Chuncharunee S, Archararit N, Ungkanont A, Jootar S, Angchaisuksiri P, Bunyaratavej A, et al. (2000) Etiology and incidence of thrombotic and hemorrhagic disorders in Thai patients with extreme thrombocytosis. J Med Assoc Thai 83 Suppl 1: S95–100.
    1. Hathirat P, Mahaphan W, Chuansumrit A, Pintadit P, Sasanakul W, Isarangkura P (1993) Platelet counts in thalassemic children before and after splenectomy. Southeast Asian J Trop Med Public Health 24 Suppl 1: 213–215.
    1. Setty BN, Kulkarni S, Rao AK, Stuart MJ (2000) Fetal hemoglobin in sickle cell disease: relationship to erythrocyte phosphatidylserine exposure and coagulation activation. Blood 96: 1119–1124.
    1. Setty BN, Kulkarni S, Dampier CD, Stuart MJ (2001) Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood 97: 2568–2573.
    1. Tefferi A (2008) Platelet count in essential thrombocythemia: the more the better? Blood 112: 3526–3527. doi:
    1. van der Bom JG, Heckbert SR, Lumley T, Holmes CE, Cushman M, Folsom AR, et al. (2009) Platelet count and the risk for thrombosis and death in the elderly. J Thromb Haemost 7: 399–405. doi:
    1. Swerdlow PS (2006) Red cell exchange in sickle cell disease. Hematology Am Soc Hematol Educ Program: 48–53. doi:
    1. de Haan G, Nijhof W, Van Zant G (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89: 1543–1550.
    1. Saunthararajah Y, Triozzi P, Rini B, Singh A, Radivoyevitch T, Sekeres M, et al. (2012) p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies. Semin Oncol 39: 97–108. doi:
    1. Ng KP, Ebrahem Q, Negrotto S, Mahfouz RZ, Link KA, Hu Z, et al. (2011) p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 25: 1739–1750. doi:
    1. Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K, et al. (2012) CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 26: 244–254. doi:
    1. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, et al. (2012) Transient Low Doses of DNA-Demethylating Agents Exert Durable Antitumor Effects on Hematological and Epithelial Tumor Cells. Cancer Cell 21: 430–446. doi:
    1. Momparler RL, Cote S, Momparler LF (2013) Epigenetic action of decitabine (5-aza-2'-deoxycytidine) is more effective against acute myeloid leukemia than cytotoxic action of cytarabine (ARA-C). Leuk Res. 37: 980–984. doi:
    1. Velcheti V, Radivoyevitch T, Saunthararajah Y (2017) Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. Am Soc Clin Oncol Educ Book 37: 812–824. doi:
    1. Negrotto S, Hu Z, Alcazar O, Ng KP, Triozzi P, Lindner D, et al. (2011) Noncytotoxic differentiation treatment of renal cell cancer. Cancer Res 71: 1431–1441. doi:
    1. Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, et al. (2012) Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer 131: 18–29. doi:
    1. Terse P, Engelke K, Chan K, Ling Y, Sharpnack D, Saunthararajah Y, et al. (2014) Subchronic oral toxicity study of decitabine in combination with tetrahydrouridine in CD-1 mice. Int J of Toxicol 33: 75–85.
    1. Heinemann V, Plunkett W (1989) Modulation of deoxynucleotide metabolism by the deoxycytidylate deaminase inhibitor 3,4,5,6-tetrahydrodeoxyuridine. Biochem Pharmacol 38: 4115–4121.
    1. Dedrick RL, Forrester DD, Cannon JN, el-Dareer SM, Mellett LB (1973) Pharmacokinetics of 1-beta-D-arabinofuranosylcytosine (ARA-C) deamination in several species. Biochem Pharmacol 22: 2405–2417.
    1. Goren A, Simchen G, Fibach E, Szabo PE, Tanimoto K, Chakalova L, et al. (2006) Fine tuning of globin gene expression by DNA methylation. PLoS ONE 1(1): e46 doi:
    1. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG (1984) Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest 74: 652–656. doi:
    1. Saunthararajah Y, Lavelle D, DeSimone J (2004) DNA hypo-methylating agents and sickle cell disease. Brit J Haematol 126: 629–636.
    1. Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, et al. (2008) The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood 111: 5093–5100. doi:
    1. Lee JH, Choy ML, Ngo L, Foster SS, Marks PA (2010) Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A 107: 14639–14644. doi:
    1. Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A, et al. (2010) Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 70: 4470–4480. doi:
    1. Gaymes TJ, Padua RA, Pla M, Orr S, Omidvar N, Chomienne C, et al. (2006) Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis? Mol Cancer Res 4: 563–573. doi:
    1. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51. doi:
    1. Clements EG, Mohammad HP, Leadem BR, Easwaran H, Cai Y, Van Neste L, et al. (2012) DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res 40: 4334–4346. doi:
    1. Brenner C, Luciani J, Bizet M, Ndlovu M, Josseaux E, Dedeurwaerder S, et al. (2016) The interplay between the lysine demethylase KDM1A and DNA methyltransferases in cancer cells is cell cycle dependent. Oncotarget 7: 58939–58952. doi:

Source: PubMed

3
Iratkozz fel