STUMP un"stumped": anti-tumor response to anaplastic lymphoma kinase (ALK) inhibitor based targeted therapy in uterine inflammatory myofibroblastic tumor with myxoid features harboring DCTN1-ALK fusion

Vivek Subbiah, Caitlin McMahon, Shreyaskumar Patel, Ralph Zinner, Elvio G Silva, Julia A Elvin, Ishwaria M Subbiah, Chimela Ohaji, Dhakshina Moorthy Ganeshan, Deepa Anand, Charles F Levenback, Jenny Berry, Tim Brennan, Juliann Chmielecki, Zachary R Chalmers, John Mayfield, Vincent A Miller, Philip J Stephens, Jeffrey S Ross, Siraj M Ali, Vivek Subbiah, Caitlin McMahon, Shreyaskumar Patel, Ralph Zinner, Elvio G Silva, Julia A Elvin, Ishwaria M Subbiah, Chimela Ohaji, Dhakshina Moorthy Ganeshan, Deepa Anand, Charles F Levenback, Jenny Berry, Tim Brennan, Juliann Chmielecki, Zachary R Chalmers, John Mayfield, Vincent A Miller, Philip J Stephens, Jeffrey S Ross, Siraj M Ali

Abstract

Background: Recurrent, metastatic mesenchymal myxoid tumors of the gynecologic tract present a management challenge as there is minimal evidence to guide systemic therapy. Such tumors also present a diagnostic dilemma, as myxoid features are observed in leiomyosarcomas, inflammatory myofibroblastic tumors (IMT), and mesenchymal myxoid tumors. Comprehensive genomic profiling was performed in the course of clinical care on a case of a recurrent, metastatic myxoid uterine malignancy (initially diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP)), to guide identify targeted therapeutic options. To our knowledge, this case represents the first report of clinical response to targeted therapy in a tumor harboring a DCTN1-ALK fusion protein.

Methods: Hybridization capture of 315 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer was applied to >50 ng of DNA extracted from this sample and sequenced to high, uniform coverage. Therapy was given in the context of a phase I clinical trial ClinicalTrials.gov Identifier: ( NCT01548144 ).

Results: Immunostains showed diffuse positivity for ALK1 expression and comprehensive genomic profiling identified an in frame DCTN1-ALK gene fusion. The diagnosis of STUMP was revised to that of an IMT with myxoid features. The patient was enrolled in a clinical trial and treated with an anaplastic lymphoma kinase (ALK) inhibitor (crizotinib/Xalkori®) and a multikinase VEGF inhibitor (pazopanib/Votrient®). The patient experienced an ongoing partial response (6+ months) by response evaluation criteria in solid tumors (RECIST) 1.1 criteria.

Conclusions: For myxoid tumors of the gynecologic tract, comprehensive genomic profiling can identify clinical relevant genomic alterations that both direct treatment targeted therapy and help discriminate between similar diagnostic entities.

Figures

Fig. 1
Fig. 1
IMT infiltrating the myometrium are images 1 and 2. The myxoid areas are infiltrating the muscle of the myometrium. Image 3 is an immunostain for ALK, diffusely positive in the spindle tumor cells
Fig. 2
Fig. 2
Representative genome images from the Integrated Genome Viewer (IGV) alterations for deletion of ALK exon 1–19, and fusion of ALK-DCTN1 demonstrating ALK and DCTN1 fusion found in the patient with inflammatory myofibroblastic tumor with myxoid features who had a response to ALK inhibitor based therapy
Fig. 3
Fig. 3
The DCTN1-ALK intra-chromosomal rearrangement detected in this case conformed to the common structural organization of ALK fusions, with the vast majority having an ALK intron 19 breakpoint and is a priori suspected to active in vivo. The DCTN1 component of the fusion contains exons including the coiled-coil domains, which is similar to other previously reported ALK fusion partners. Via these domains, DCTN1 is suspected to promote dimerization of ALK and subsequent kinase activation by transphosphorylation
Fig. 4
Fig. 4
Imaging studies at baseline and follow-up. a Pre-treatment axial CT image shows a 6.2 × 5.1 cm peritoneal implant in the left upper quadrant (top) and a 4.4 × 4 cm peritoneal implant in the right hepatorenal space (bottom). b Follow-up axial CT image shows interval decrease in the peritoneal implant in the left upper quadrant which measures 4.5 × 3.8 cm, previously 6.2 × 5.1 cm (top). Axial CT image shows that the 4.4 × 4 cm peritoneal implant in the right hepatorenal space (bottom) has not changed much in size (measured 4.4 × 3.7 cm), but the lesion has now become less dense. This is an important observation as this represents response to therapy. Radiologists and clinicians should be aware that many targeted therapies may not result in significant change in size particularly during the early stages but may cause interval decrease in vascularity; on CT, this may be seen as decrease in density of the target lesions and represents response to therapy

References

    1. Zulfiqar MI, Sheikh UN, Montgomery EA. Myxoid neoplasms. Surg Pathol Clin. 2011;4:843–64. doi: 10.1016/j.path.2011.08.012.
    1. Frampton GM, Fitchtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31. doi: 10.1038/nbt.2696.
    1. Zinner R. Pazopanib or pemetrexed and crizotinib in advanced cancer. (M.D. Anderson Cancer Center). at .
    1. Marino-Enriquez A, Dal CP. ALK as a paradigm of oncogenic promiscuity: different mechanisms of activation and different fusion partners drive tumors of different lineages. Cancer Genet. 2013;206:357–73. doi: 10.1016/j.cancergen.2013.07.001.
    1. Wang X, Krishnan C, Nguyen EP, Meyer KJ, Oliverira JL, Yang P, et al. Fusion of dynactin 1 to anaplastic lymphoma kinase in inflammatory myofibroblastic tumor. Hum Pathol. 2012;43:2047–52. doi: 10.1016/j.humpath.2012.02.014.
    1. Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, Yeh I, et al. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas. Nat Commun. 2014;5:3116.
    1. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–4. doi: 10.1126/science.8122112.
    1. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8.
    1. Allen PW. Myxoid tumors of soft tissues. Pathol Annu. 1980;15:133–92.
    1. Mackenzie DH. The myxoid tumors of somatic soft tissues. Am J Surg Pathol. 1981;5:443–58. doi: 10.1097/00000478-198107000-00004.
    1. Graadt van Roggen JF, Hogendoorn PC, Fletcher CD. Myxoid tumours of soft tissue. Histopathology. 1999;35:291–312.
    1. Coffin CM, Patel A, Perkins S, Elenitoba-Johnson KS, Perlman E, Griffin CA. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol. 2001;14:569–76. doi: 10.1038/modpathol.3880352.
    1. Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4:889–95. doi: 10.1158/-14-0377.
    1. Fraggetta F, Doglioni C, Scollo P, Pecciarini L, Ippolito M, Amico P, et al. Uterine inflammatory myofibroblastic tumor in a 10-year-old girl presenting as polypoid mass. J Clin Oncol. 2015;33.
    1. Gleason BC, Hornick JL. Inflammatory myofibroblastic tumours: where are we now? J Clin Pathol. 2008;61:428–37. doi: 10.1136/jcp.2007.049387.
    1. Cook JR, Dehner LP, Collins MH, Ma Z, Morris SW, Coffin CM, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol. 2001;25:1364–71. doi: 10.1097/00000478-200111000-00003.
    1. Kushnir CL, Gerardi M, Banet N, Shih I-M, Diaz-Montes T. Extrauterine inflammatory myofibroblastic tumor: a case report. Gynecol Oncol Case Rep. 2013;6.
    1. Parra-Herran C, Quick CM, Howitt BE, Dal Cin P, Quade BJ, Nucci MR. Inflammatory myofibroblastic tumor of the uterus: clinical and pathologic review of 10 cases including a subset with aggressive clinical course. Am J Surg Pathol. 2015;39:157–68. doi: 10.1097/PAS.0000000000000330.
    1. Fuehrer NE, Keeney GL, Ketterling RP, Knudson RA, Bell DA. ALK-1 protein expression and ALK gene rearrangements aid in the diagnosis of inflammatory myofibroblastic tumors of the female genital tract. Arch Pathol Lab Med. 2012;136:623–6. doi: 10.5858/arpa.2011-0341-OA.
    1. Melloni G, Carretta A, Ciriaco P, Arrigoni G, Fieschi S, Rizzo N, et al. Inflammatory pseudotumor of the lung in adults. Ann Thorac Surg. 2005;79:426–32. doi: 10.1016/j.athoracsur.2004.07.077.
    1. Mosse YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80. doi: 10.1016/S1470-2045(13)70095-0.
    1. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. doi: 10.1056/NEJMoa1006448.
    1. Ou SH, Kwak EL, Siawak-Tapp C, Dy J, Bergethon K, Clark JW, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol. 2011;6:942–6. doi: 10.1097/JTO.0b013e31821528d3.
    1. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–70. doi: 10.1200/JCO.2011.35.6345.
    1. Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363:1727–33. doi: 10.1056/NEJMoa1007056.
    1. Lorenzi L, Cigognetti M, Medicina D, Pellegrini V, Balzarini P, Cestari R, et al. ALK-positive inflammatory myofibroblastic tumor of the abdomen with widespread microscopic multifocality. Int J Surg Pathol. 2014;22:640–4. doi: 10.1177/1066896914525232.
    1. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9. doi: 10.1056/NEJMoa1412690.
    1. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94. doi: 10.1056/NEJMoa1214886.
    1. Stinchcombe, T. E. Recent advances in the treatment of non-small cell and small cell lung cancer. F1000Prime Rep. 2014;6:117.
    1. Van Geel RM, Beijnen JH, Schellens JH. Concise drug review: pazopanib and axitinib. Oncologist. 2012;17:1081–9. doi: 10.1634/theoncologist.2012-0055.

Source: PubMed

3
Iratkozz fel