Argininosuccinate Lyase Deficiency

Sandesh C Sreenath Nagamani, Ayelet Erez, Brendan Lee, Margaret P Adam, Ghayda M Mirzaa, Roberta A Pagon, Stephanie E Wallace, Lora JH Bean, Karen W Gripp, Anne Amemiya, Sandesh C Sreenath Nagamani, Ayelet Erez, Brendan Lee, Margaret P Adam, Ghayda M Mirzaa, Roberta A Pagon, Stephanie E Wallace, Lora JH Bean, Karen W Gripp, Anne Amemiya

Excerpt

Clinical characteristics: Deficiency of argininosuccinate lyase (ASL), the enzyme that cleaves argininosuccinic acid to produce arginine and fumarate in the fourth step of the urea cycle, may present as a severe neonatal-onset form or a late-onset form:

  1. The severe neonatal-onset form is characterized by hyperammonemia within the first few days after birth that can manifest as increasing lethargy, somnolence, refusal to feed, vomiting, tachypnea, and respiratory alkalosis. Absence of treatment leads to worsening lethargy, seizures, coma, and even death.

  2. In contrast, the manifestations of late-onset form range from episodic hyperammonemia triggered by acute infection or stress to cognitive impairment, behavioral abnormalities, and/or learning disabilities in the absence of any documented episodes of hyperammonemia.

Manifestations of ASL deficiency that appear to be unrelated to the severity or duration of hyperammonemic episodes:

  1. Neurocognitive deficiencies (attention-deficit/hyperactivity disorder, developmental delay, seizures, and learning disability)

  2. Liver disease (hepatitis, cirrhosis)

  3. Trichorrhexis nodosa (coarse brittle hair that breaks easily)

  4. Systemic hypertension

Diagnosis/testing: Elevated plasma ammonia concentration (>100 µmol/L), elevated plasma citrulline concentration (usually 100-300 µmol/L), and elevated argininosuccinic acid in the plasma or urine establish the diagnosis of ASL deficiency. Identification of biallelic pathogenic variants in ASL by molecular genetic testing or – in limited instances – by significantly reduced ASL enzyme activity from skin fibroblasts, red blood cells, or in a flash-frozen sample from a liver biopsy help in confirmation of the diagnosis. Note: All 50 states in the US include ASL deficiency in their newborn screening programs.

Management: Treatment of manifestations: Treatment involves rapid control of hyperammonemia during metabolic decompensations and long-term management to help prevent episodes of hyperammonemia and long-term complications. During acute hyperammonemic episodes, oral protein intake is discontinued, oral intake is supplemented with intravenous lipids and/or glucose, and intravenous nitrogen-scavenging therapy is used. If ammonia levels do not normalize, hemodialysis is the next step.

Dietary restriction of protein and dietary supplementation with arginine are the mainstays in long-term management; for those not responsive to these measures, oral nitrogen-scavenging therapy can be considered. Orthotopic liver transplantation (OLT) is considered only in patients with recurrent hyperammonemia or metabolic decompensations resistant to conventional medical therapy.

Surveillance: Monitoring the concentration of plasma amino acids to identify deficiency of essential amino acids and impending hyperammonemia at intervals depending on age and metabolic status.

Agents/circumstances to avoid: Excess protein intake; less than recommended intake of protein; prolonged fasting or starvation; obvious exposure to communicable diseases; valproic acid; intravenous steroids; hepatotoxic drugs (in those with hepatic involvement).

Evaluation of relatives at risk: Testing of at-risk sibs (either by molecular genetic testing if the family-specific pathogenic variants are known or by biochemical testing) shortly after birth can reduce morbidity by permitting early diagnosis and treatment of those who are affected.

Genetic counseling: ASL deficiency is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing for at-risk family members and prenatal testing and preimplantation diagnosis for pregnancies at increased risk are possible if the pathogenic variants in the family have been identified.

Copyright © 1993-2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

References

    1. Ahrens M, Barsotti R, Batshaw M, Berry G, Cederbaum S, Jopling M, Lee B, LeMons C, Leonard J, Markowitz D, McArthur R, Mofidi S, Rosen M, Singh R, Steiner R, Summar M, Tuchman M, Vonachen S. The Urea Cycle Disorders Conference Group consensus statement from a conference for the management of patients with urea cycle disorders. J Pediatr. 2001;138:S1–5.
    1. Al-Sayed M, Alahmed S, Alsmadi O, Khalil H, Rashed MS, Imtiaz F, Meyer BF. Identification of a common novel mutation in Saudi patients with argininosuccinic aciduria. J Inherit Metab Dis. 2005;28:877–83.
    1. Baruteau J, Jameson E, Morris AA, Chakrapani A, Santra S, Vijay S, Kocadag H, Beesley CE, Grunewald S, Murphy E, Cleary M, Mundy H, Abulhoul L, Broomfield A, Lachmann R, Rahman Y, Robinson PH, MacPherson L, Foster K, Chong WK, Ridout DA, Bounford KM, Waddington SN, Mills PB, Gissen P, Davison JE. Expanding the phenotype in argininosuccinic aciduria: need for new therapies. J Inherit Metab Dis. 2017;40:357–68.
    1. Batshaw ML, MacArthur RB, Tuchman M. Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr. 2001;138:S46–54.
    1. Billmeier GJ, Jr, Molinary SV, Wilroy RS, Jr, Duenas DA, Brannon ME. Argininosuccinic aciduria: investigation of an affected family. J Pediatr. 1974;84:85–9.
    1. Brosnan ME, Brosnan JT. Orotic acid excretion and arginine metabolism. J Nutr. 2007;137:1656S–61S.
    1. Brusilow S, Horwich A. Urea cycle enzymes. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, eds. The Metabolic and Molecular Bases of Inherited Disease. 8 ed. Chapter 85. New York: McGraw-Hill; 2001:1909-63.
    1. Coryell ME, Hall WK, Thevaos TG, Welter DA, Gatz AJ, Horton BF, Sisson BD, Looper JW, Jr, Farrow RT. A familial study of a human enzyme defect, argininosuccinic aciduria. Biochem Biophys Res Commun. 1964;14:307–12.
    1. Fichtel JC, Richards JA, Davis LS. Trichorrhexis nodosa secondary to argininosuccinicaciduria. Pediatr Dermatol. 2007;24:25–7.
    1. Ficicioglu C, Mandell R, Shih VE. Argininosuccinate lyase deficiency: longterm outcome of 13 patients detected by newborn screening. Mol Genet Metab. 2009;98:273–7.
    1. Gerrits GP, Gabreëls FJ, Monnens LA, De Abreu RA, van Raaij-Selten B, Niezen-Koning KE, Trijbels JM. Argininosuccinic aciduria: clinical and biochemical findings in three children with the late onset form, with special emphasis on cerebrospinal fluid findings of amino acids and pyrimidines. Neuropediatrics. 1993;24:15–8.
    1. Huang SJ, Amendola LM, Sternen DL. Variation among DNA banking consent forms: points for clinicians to bank on. J Community Genet. 2022;13:389–97.
    1. Kamoun P, Fensom AH, Shin YS, Bakker E, Colombo JP, Munnich A, Bird S, Canini S, Huijmans JG, Chadefaux-Vekemans B, et al. Prenatal diagnosis of the urea cycle diseases: a survey of the European cases. Am J Med Genet. 1995;55:247–50.
    1. Kho J, Tian X, Wong WT, Bertin T, Jiang MM, Chen S, Jin Z, Shchelochkov OA, Burrage LC, Reddy AK, Jiang H, Abo-Zahrah R, Ma S, Zhang P, Bissig KD, Kim JJ, Devaraj S, Rodney GG, Erez A, Bryan NS, Nagamani SCS, Lee BH. Argininosuccinate lyase deficiency causes an endothelial-dependent form of hypertension. Am J Hum Genet. 2018;103:276–87.
    1. Kleijer WJ, Garritsen VH, Linnebank M, Mooyer P, Huijmans JG, Mustonen A, Simola KO, Arslan-Kirchner M, Battini R, Briones P, Cardo E, Mandel H, Tschiedel E, Wanders RJ, Koch HG. Clinical, enzymatic, and molecular genetic characterization of a biochemical variant type of argininosuccinic aciduria: prenatal and postnatal diagnosis in five unrelated families. J Inherit Metab Dis. 2002;25:399–410.
    1. Kleijer WJ, Garritsen VH, van der Sterre ML, Berning C, Häberle J, Huijmans JG. Prenatal diagnosis of citrullinemia and argininosuccinic aciduria: evidence for a transmission ratio distortion in citrullinemia. Prenat Diagn. 2006;26:242–7.
    1. Kölker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Boy SP, Rasmussen MB, Burgard P, Chabrol B, Chakrapani A, Chapman K, Cortès I, Saladelafont E, Couce ML, de Meirleir L, Dobbelaere D, Furlan F, Gleich F, González MJ, Gradowska W, Grünewald S, Honzik T, Hörster F, Ioannou H, Jalan A, Häberle J, Haege G, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, Murphy E, de Baulny HO, Ortez C, Pedrón CC, Pintos-Morell G, Pena-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Lund AM, Garcia-Cazorla A. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38:1059–74.
    1. Kvedar JC, Baden HP, Baden LA, Shih VE, Kolodny EH. Dietary management reverses grooving and abnormal polarization of hair shafts in argininosuccinase deficiency. Am J Med Genet. 1991;40:211–3.
    1. Mercimek-Mahmutoglu S, Moeslinger D, Häberle J, Engel K, Herle M, Strobl MW, Scheibenreiter S, Muehl A, Stöckler-Ipsiroglu S. Long-term outcome of patients with argininosuccinate lyase deficiency diagnosed by newborn screening in Austria. Mol Genet Metab. 2010;100:24–8.
    1. Mori M, Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. J Nutr. 2004;134:2820S–5S.
    1. Mori T, Nagai K, Mori M, Nagao M, Imamura M, Iijima M, Kobayashi K. Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr Dev Pathol. 2002;5:597–601.
    1. Nagamani SC, Campeau PM, Shchelochkov OA, Premkumar MH, Guse K, Brunetti-Pierri N, Chen Y, Sun Q, Tang Y, Palmer D, Reddy AK, Li L, Slesnick TC, Feig DI, Caudle S, Harrison D, Salviati L, Marini JC, Bryan NS, Erez A, Lee B. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012a;90:836–46.
    1. Nagamani SC, Lee B, Erez A. Optimizing therapy for argininosuccinic aciduria. Mol Genet Metab. 2012b;107:10–4.
    1. Nagamani SC, Shchelochkov OA, Mullins MA, Carter S, Lanpher BC, Sun Q, Kleppe S, Erez A, O'Brian Smith E, Marini JC, Lee B, et al. A randomized controlled trial to evaluate the effects of high-dose versus low-dose of arginine therapy on hepatic function tests in argininosuccinic aciduria. Mol Genet Metab. 2012c;107:315–21.
    1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
    1. Saudubray JM, Touati G, Delonlay P, Jouvet P, Narcy C, Laurent J, Rabier D, Kamoun P, Jan D, Revillon Y. Liver transplantation in urea cycle disorders. Eur J Pediatr. 1999;158 Suppl 2:S55–9.
    1. Trevisson E, Burlina A, Doimo M, Pertegato V, Casarin A, Cesaro L, Navas P, Basso G, Sartori G, Salviati L. Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J Biol Chem. 2009;284:28926–34.
    1. Trevisson E, Salviati L, Baldoin MC, Toldo I, Casarin A, Sacconi S, Cesaro L, Basso G, Burlina AB. Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Hum Mutat. 2007;28:694–702.
    1. Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, Kerr DS, Diaz GA, Seashore MR, Lee HS, McCarter RJ, Krischer JP, Batshaw ML, et al. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94:397–402.
    1. Widhalm K, Koch S, Scheibenreiter S, Knoll E, Colombo JP, Bachmann C, Thalhammer O. Long-term follow-up of 12 patients with the late-onset variant of argininosuccinic acid lyase deficiency: no impairment of intellectual and psychomotor development during therapy. Pediatrics. 1992;89:1182–4.
    1. Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol. 1981;241:E473–80.
    1. Wu G, Morris SM., Jr Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.
    1. Yu B, Howell PL. Intragenic complementation and the structure and function of argininosuccinate lyase. Cell Mol Life Sci. 2000;57:1637–51.

Source: PubMed

3
Iratkozz fel