5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

Sonia M Brodie, Sean Meehan, Michael R Borich, Lara A Boyd, Sonia M Brodie, Sean Meehan, Michael R Borich, Lara A Boyd

Abstract

Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS) over the ipsilesional primary sensory cortex (IL-S1) might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n = 11/group). Following stimulation, both groups practiced a Serial Tracking Task (STT) with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5 Hz rTMS + training group demonstrated significantly greater improvements in STT performance {response time [F (1, 286.04) = 13.016, p < 0.0005], peak velocity [F (1, 285.95) = 4.111, p = 0.044], and cumulative distance [F (1, 285.92) = 4.076, p = 0.044]} and cutaneous somatosensation [F (1, 21.15) = 8.793, p = 0.007] across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5 Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

Keywords: hemiparesis; motor learning; primary sensory cortex; repetitive transcranial magnetic stimulation; stroke; upper extremity.

Figures

Figure 1
Figure 1
(A) Experimental overview. At the baseline session on day 1, STT performance was assessed along with RMT, 2PD, WMFT, and Box & Blocks performance. Five sessions of rTMS paired with STT practice were completed on separate days (days 2–6). A delayed no-rTMS retention test was administered on a separate day 7 to assess motor learning; all baseline measures were re-assessed. (B) Example of target locations in BrainSight™ for M1 and S1. (C) Schematic of the experimental motor learning task, the STT, showing the adapted mouse, a sample progression of targets and illustration of a path of movements between 2 targets. STT, Serial Tracking Task; RMT, Resting Motor Threshold; 2PD, 2 Point Discrimination; WMFT, Wolf Motor Function Test; rTMS, repetitive Transcranial Magnetic Stimulation.
Figure 2
Figure 2
(A) Serial tracking task (STT) mean performance values across all 7 days of the experiment for the Active and Sham groups. A significant Group * Day interaction was observed for (i) Response Time, (ii) Peak Velocity and (iii) Cumulative Distance tracked (p ≤ 0.044). (B) Change scores from baseline to retention for the Active and Sham groups. Negative change scores reflect performance improvements from baseline to retention, as reflected by reduced response times, lower peak velocities and less cumulative distance traveled, respectively. A significant Group * Day interaction was observed for Response Time (i; *p = 0.011), but not for Peak Velocity (ii; p = 0.122) or Cumulative Distance tracked (iii; p = 0.081). Error bars are s.e.m.
Figure 3
Figure 3
Individual thresholds for 2-point discrimination at baseline and retention, by stimulation type. Lower values indicate better somatosensory discrimination (i.e., less distance between stimulation points). Solid lines indicate first time participation, dashed lines indicate second time (crossed over) participation. (n = 8 Active; 10 Sham). *p = 0.007.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3968757/bin/fnhum-08-00143-g0004.jpg

References

    1. Ackerley S. J., Stinear C. M., Barber P. A., Byblow W. D. (2010). Combining theta burst stimulation with training after subcortical stroke. Stroke 41, 1568–1572 10.1161/STROKEAHA.110.583278
    1. Bogard K., Wolf S., Zhang Q., Thompson P., Morris D., Nichols-Larsen D. (2009). Can the wolf motor function test be streamlined? Neurorehabil. Neural Repair 23, 422–428 10.1177/1545968308331141
    1. Boggio P. S., Alonso-Alonso M., Mansur C. G., Rigonatti S. P., Schlaug G., Pascual-Leone A., et al. (2006). Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke. Am. J. Phys. Med. Rehabil. 85, 927–930 10.1097/01.phm.0000242635.88129.38
    1. Boyd L. A., Edwards J. D., Siengsukon C. S., Vidoni E. D., Wessel B. D., Linsdell M. A. (2009). Motor sequence chunking is impaired by basal ganglia stroke. Neurobiol. Learn. Mem. 92, 35–44 10.1016/j.nlm.2009.02.009
    1. Boyd L. A., Linsdell M. A. (2009). Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci. 10:72 10.1186/1471-2202-10-72
    1. Boyd L., Winstein C. (2006). Explicit information interferes with implicit motor learning of both continuous and discrete movement tasks after stroke. J. Neurol. Phys. Ther. 30, 46–57 discussion: 58–59. 10.1097/01.NPT.0000282566.48050.9b
    1. Calautti C., Naccarato M., Jones P. S., Sharma N., Day D. D., Carpenter A. T., et al. (2007). The relationship between motor deficit and hemisphere activation balance after stroke: a 3T fMRI study. Neuroimage. 34, 322–331 10.1016/j.neuroimage.2006.08.026
    1. Carey J. R., Anderson D. C., Gillick B. T., Whitford M., Pascual-Leone A. (2010). 6-Hz primed low-frequency rTMS to contralesional M1 in two cases with middle cerebral artery stroke. Neurosci. Lett. 469, 338–342 10.1016/j.neulet.2009.12.023
    1. Celnik P., Hummel F., Harris-Love M., Wolk R., Cohen L. G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch. Phys. Med. Rehabil. 88, 1369–1376 10.1016/j.apmr.2007.08.001
    1. Chen W. H., Mima T., Siebner H. R., Oga T., Hara H., Satow T., et al. (2003). Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional activation and functional coupling of cortical motor areas. Clin. Neurophysiol. 114, 1628–1637 10.1016/S1388-2457(03)00063-4
    1. Chouinard P. A., Leonard G., Paus T. (2005). Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. J. Neurosci. 25, 2277–2284 10.1523/JNEUROSCI.4649-04.2005
    1. Cohen L. G., Roth B. J., Nilsson J., Dang N., Panizza M., Bandinelli S., et al. (1990). Effects of coil design on focal magnetic stimulation - technical considerations. Electroencephalogr. Clin. Neurophysiol. 75, 350–357 10.1016/0013-4694(90)90113-X
    1. Cohen L. G., Ziemann U., Chen R., Classen J., Hallett M., Gerloff C., et al. (1998). Studies of neuroplasticity with transcranial magnetic stimulation. J. Clin. Neurophysiol. 15, 305–324 10.1097/00004691-199807000-00003
    1. Cox R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 10.1006/cbmr.1996.0014
    1. Dayan E., Cohen L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron 72, 443–454 10.1016/j.neuron.2011.10.008
    1. Debas K., Carrier J., Orban P., Barakat M., Lungu O., Vandewalle G., et al. (2010). Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc. Natl. Acad. Sci. U.S.A. 107, 17839–17844 10.1073/pnas.1013176107
    1. Duncan P. W., Goldstein L. B., Matchar D., Divine G. W., Feussner J. (1992). Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23, 1084–1089 10.1161/01.STR.23.8.1084
    1. Eshel N., Ruff C. C., Spitzer B., Blankenburg F., Driver J. (2010). Effects of parietal TMS on somatosensory judgments challenge interhemispheric rivalry accounts. Neuropsychologia 48, 3470–3481 10.1016/j.neuropsychologia.2010.07.031
    1. Fling B. W., Benson B. L., Seidler R. D. (2013). Transcallosal sensorimotor fiber tract structure-function relationships. Hum. Brain Mapp. 34, 384–395 10.1002/hbm.21437
    1. Fregni F., Boggio P. S., Valle A. C., Rocha R. R., Duarte J., Ferreira M. J., et al. (2006). A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 37, 2115–2122 10.1161/01.STR.0000231390.58967.6b
    1. Fugl-Meyer A. R., Jaasko L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scand. J. Rehabil. 7, 13–31
    1. Gresham G. E., Duncan P. W., Stason W. B., Adams H. P., Adelman A. M., Alexander D. N., et al. (1995). Post-Stroke Rehabilitation. Rockville, MD: U.S. Department of Health and Human Services; Public Health Service, Agency for Health Care Policy and Research.
    1. Hamdy S., Rothwell J. C., Aziz Q., Singh K. D., Thompson D. G. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci. 1, 64–68 10.1038/264
    1. Hendricks H. T., van Limbeek J., Geurts A. C., Zwarts M. J. (2002). Motor recovery after stroke: a systematic review of the literature. Arch. Phys. Med. Rehabil. 83, 1629–1637 10.1053/apmr.2002.35473
    1. Hodics T. M., Nakatsuka K., Upreti B., Alex A., Smith P. S., Pezzullo J. C. (2012). Wolf motor function test for characterizing moderate to severe hemiparesis in stroke patients. Arch. Phys. Med. Rehabil. 93, 1963–1967 10.1016/j.apmr.2012.05.002
    1. Iriki A., Pavlides C., Keller A., Asanuma H. (1991). Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. J. Neurophysiol. 65, 1435–1441
    1. Ito M. (2000). Neurobiology: internal model visualized. Nature 13, 153–154 10.1038/35003097
    1. Maeda F., Keenan J. P., Tormos J. M., Topka H., Pascual-Leone A. (2000). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 111, 800–805 10.1016/S1388-2457(99)00323-5
    1. Maldjian J. A., Gottschalk A., Patel R. S., Detre J. A., Alsop D. C. (1999). The sensory somatotopic map of the human hand demonstrated at 4 Tesla. Neuroimage. 10, 55–62 10.1006/nimg.1999.0448
    1. Mathiowetz V., Kashman N., Volland G., Weber K., Dowe M., Rogers S. (1985b). Grip and pinch strength: normative data for adults. Arch. Phys. Med. Rehabil. 66, 69–74
    1. Mathiowetz V., Volland G., Kashman N., Weber K. (1985a). Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 39, 386–391 10.5014/ajot.39.6.386
    1. Meehan S. K., Dao E., Linsdell M. A., Boyd L. A. (2011b). Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke. Neurosci. Lett. 500, 26–30 10.1016/j.neulet.2011.05.237
    1. Meehan S. K., Randhawa B., Wessel B., Boyd L. A. (2011a). Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. Hum. Brain Mapp. 32, 290–303 10.1002/hbm.21019
    1. Meehan S. K., Zabukovec J. R., Dao E., Cheung K. L., Linsdell M. A., Boyd L. A. (2013). One hertz repetitive transcranial magnetic stimulation over dorsal premotor cortex enhances offline motor memory consolidation for sequence-specific implicit learning. Eur. J. Neurosci. 8, 1–9 10.1111/ejn.12291
    1. Nasreddine Z. S., Phillips N. A., Bedirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 10.1111/j.1532-5415.2005.53221.x
    1. Pascual-Leone A. (2002). Handbook of Transcranial Magnetic Stimulation. New York, NY: Arnold
    1. Pavlides C., Miyashita E., Asanuma H. (1993). Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J. Neurophysiol. 70, 733–741
    1. Ragert P., Becker M., Tegenthoff M., Pleger B., Dinse H. R. (2004). Sustained increase of somatosensory cortex excitability by 5 Hz repetitive transcranial magnetic stimulation studied by paired median nerve stimulation in humans. Neurosci. Lett. 356, 91–94 10.1016/j.neulet.2003.11.034
    1. Ragert P., Dinse H. R., Pleger B., Wilimzig C., Frombach E., Schwenkreis P., et al. (2003). Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans. Neurosci. Lett. 348, 105–108 10.1016/S0304-3940(03)00745-6
    1. Robertson E. M., Pascual-Leone A., Miall R. C. (2004). Current concepts in procedural consolidation. Nat. Rev. Neurosci. 5, 576–582 10.1038/nrn1426
    1. Rorden C., Karnath H.-O., Bonilha L. (2007). Improving lesion-symptom mapping. J. Cogn. Neurosci. 19, 1081–1088 10.1162/jocn.2007.19.7.1081
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 10.1016/j.clinph.2009.08.016
    1. Sakamoto K. K., Arissiam H., Asanuma H. (1989). Functional role of the sensory cortex in learning motor skills in cats. Brain Res. 503, 258–264 10.1016/0006-8993(89)91672-7
    1. Sakamoto T., Porter L. L., Asanuma H. (1987). Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res. 413, 360–364 10.1016/0006-8993(87)91029-8
    1. Seniow J., Bilik M., Lesniak M., Waldowski K., Iwanski S., Czlonkowska A. (2012). Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabil. Neural Repair 26, 1072–1079 10.1177/1545968312445635
    1. Shimizu T., Hosaki A., Hino T., Sato M., Komori T., Hirai S., et al. (2002). Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125(Pt 8), 1896–1907 10.1093/brain/awf183
    1. Talelli P., Wallace A., Dileone M., Hoad D., Cheeran B., Oliver R., et al. (2012). Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil. Neural Repair 26, 976–987 10.1177/1545968312437940
    1. Tegenthoff M., Ragert P., Pleger B., Schwenkreis P., Forster A. F., Nicolas V., et al. (2005). Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol. 3:e362 10.1371/journal.pbio.0030362
    1. van Nes S. I., Faber C. G., Hamers R. M., Harschnitz O., Bakkers M., Hermans M. C., et al. (2008). Revising two-point discrimination assessment in normal aging and in patients with polyneuropathies. J. Neurol. Neurosurg. Psychiatry 79, 832–834 10.1136/jnnp.2007.139220
    1. Vidoni E. D., Acerra N. E., Dao E., Meehan S. K., Boyd L. A. (2010). Role of the primary somatosensory cortex in motor learning: an rTMS study. Neurobiol. Learn. Mem. 93, 532–539 10.1016/j.nlm.2010.01.011
    1. Vidoni E. D., Boyd L. A. (2009). Preserved motor learning after stroke is related to the degree of proprioceptive deficit. Behav. Brain Funct. 5:36 10.1186/1744-9081-5-36
    1. Wassermann E. M., Wang B., Zeffiro T. A., Sadato N., Pascual-Leone A., Toro C., et al. (1996). Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3, 1–9 10.1006/nimg.1996.0001
    1. Wilkinson L., Teo J. T., Obeso I., Rothwell J. C., Jahanshahi M. (2010). The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. J. Cogn. Neurosci. 22, 427–436 10.1162/jocn.2009.21208
    1. Wolf S. L., Catlin P. A., Ellis M., Archer A. L., Morgan B., Piacentino A. (2001). Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 32, 1635–1639 10.1161/01.STR.32.7.1635

Source: PubMed

3
Iratkozz fel