International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients

Alejandro G Schijman, Margarita Bisio, Liliana Orellana, Mariela Sued, Tomás Duffy, Ana M Mejia Jaramillo, Carolina Cura, Frederic Auter, Vincent Veron, Yvonne Qvarnstrom, Stijn Deborggraeve, Gisely Hijar, Inés Zulantay, Raúl Horacio Lucero, Elsa Velazquez, Tatiana Tellez, Zunilda Sanchez Leon, Lucia Galvão, Debbie Nolder, María Monje Rumi, José E Levi, Juan D Ramirez, Pilar Zorrilla, María Flores, Maria I Jercic, Gladys Crisante, Néstor Añez, Ana M De Castro, Clara I Gonzalez, Karla Acosta Viana, Pedro Yachelini, Faustino Torrico, Carlos Robello, Patricio Diosque, Omar Triana Chavez, Christine Aznar, Graciela Russomando, Philippe Büscher, Azzedine Assal, Felipe Guhl, Sergio Sosa Estani, Alexandre DaSilva, Constança Britto, Alejandro Luquetti, Janis Ladzins, Alejandro G Schijman, Margarita Bisio, Liliana Orellana, Mariela Sued, Tomás Duffy, Ana M Mejia Jaramillo, Carolina Cura, Frederic Auter, Vincent Veron, Yvonne Qvarnstrom, Stijn Deborggraeve, Gisely Hijar, Inés Zulantay, Raúl Horacio Lucero, Elsa Velazquez, Tatiana Tellez, Zunilda Sanchez Leon, Lucia Galvão, Debbie Nolder, María Monje Rumi, José E Levi, Juan D Ramirez, Pilar Zorrilla, María Flores, Maria I Jercic, Gladys Crisante, Néstor Añez, Ana M De Castro, Clara I Gonzalez, Karla Acosta Viana, Pedro Yachelini, Faustino Torrico, Carlos Robello, Patricio Diosque, Omar Triana Chavez, Christine Aznar, Graciela Russomando, Philippe Büscher, Azzedine Assal, Felipe Guhl, Sergio Sosa Estani, Alexandre DaSilva, Constança Britto, Alejandro Luquetti, Janis Ladzins

Abstract

Background: A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation.

Methodology/findings: An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05-0.5 parasites/mL whereas specific kDNA tests detected 5.10(-3) par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3-94.4%, specificity of 85-95%, accuracy of 86.8-89.5% and kappa index of 0.7-0.8 compared to consensus PCR reports of the 16 good performing tests and 63-69%, 100%, 71.4-76.2% and 0.4-0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories.

Conclusion/significance: This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Analytical Sensitivity of specific and…
Figure 1. Analytical Sensitivity of specific and coherent PCR tests in sets A and B.
Distribution of detection limits (DL) of specific and coherent PCR tests targeted to Sat-DNA (A) and kDNA sequences (B) for detecting serial dilutions of purified DNA from 3 parasite stocks (Set A) representative of T. cruzi DTU I (Silvio×10), DTU IV (Can III cl1) and DTU VI (Cl Brener). C. Distribution of detection limits (DL) of specific and coherent PCR tests targeted to Sat-DNA (black bars) and kDNA sequences (white bars) carried out from human blood spiked with serial dilutions of parasite cells (Set B).
Figure 2. Examples of the outputs of…
Figure 2. Examples of the outputs of the four best performing PCR methods.
A. LbD2 ; B.LbD3, C. LbF1 and D. LbQ. The methods are described in Materials and Methods and Table 1. 6, 15: seropositive samples; 35; seronegative sample (Table 3). PC: Positive control: 10 fg/µl of T.cruzi VI. NC. Negative Control: Master Mixes devoid of DNA.

References

    1. Chagas C. Nova trypanossomiase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotripanum cruzi n. gen., n. sp., agente etiológico de nova entidade mórbida do homem. Mem Inst Oswaldo Cruz. 1909;1:159–218.
    1. WHO Reporte del grupo de trabajo científico sobre la enfermedad de Chagas. 2007. 96 TDR/GTC/06 World Health Organization.
    1. Coura JR, Dias JC. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):31–40.
    1. Brener Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo. 1962;4:389–396.
    1. Portela-Lindoso AA, Shikanai-Yasuda MA. [Chronic Chagas' disease: from xenodiagnosis and hemoculture to polymerase chain reaction]. Rev Saude Publica. 2003;37:107–115.
    1. Gomes YM, Lorena VM, Luquetti AO. Diagnosis of Chagas disease: what has been achieved? What remains to be done with regard to diagnosis and follow up studies? Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):115–121.
    1. Moser DR, Kirchhoff LV, Donelson JE. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol. 1989;27:1477–1482.
    1. Avila HA, Pereira JB, Thiemann O, De Paiva E, DeGrave W, et al. Detection of Trypanosoma cruzi in blood specimens of chronic chagasic patients by polymerase chain reaction amplification of kinetoplast minicircle DNA: comparison with serology and xenodiagnosis. J Clin Microbiol. 1993;31:2421–2426.
    1. Britto C, Cardoso MA, Vanni CM, Hasslocher-Moreno A, Xavier SS, et al. Polymerase chain reaction detection of Trypanosoma cruzi in human blood samples as a tool for diagnosis and treatment evaluation. Parasitology. 1995;110(Pt 3):241–247.
    1. Wincker P, Telleria J, Bosseno MF, Cardoso MA, Marques P, et al. PCR-based diagnosis for Chagas' disease in Bolivian children living in an active transmission area: comparison with conventional serological and parasitological diagnosis. Parasitology. 1997;114(Pt 4):367–373.
    1. Russomando G, de Tomassone MM, de Guillen I, Acosta N, Vera N, et al. Treatment of congenital Chagas' disease diagnosed and followed up by the polymerase chain reaction. Am J Trop Med Hyg. 1998;59:487–491.
    1. Solari A, Ortiz S, Soto A, Arancibia C, Campillay R, et al. Treatment of Trypanosoma cruzi-infected children with nifurtimox: a 3 year follow-up by PCR. J Antimicrob Chemother. 2001;48:515–519.
    1. Castro AM, Luquetti AO, Rassi A, Rassi GG, Chiari E, et al. Blood culture and polymerase chain reaction for the diagnosis of the chronic phase of human infection with Trypanosoma cruzi. Parasitol Res. 2002;88:894–900.
    1. Galvao LM, Chiari E, Macedo AM, Luquetti AO, Silva SA, et al. PCR assay for monitoring Trypanosoma cruzi parasitemia in childhood after specific chemotherapy. J Clin Microbiol. 2003;41:5066–5070.
    1. Schijman AG, Altcheh J, Burgos JM, Biancardi M, Bisio M, et al. Aetiological treatment of congenital Chagas' disease diagnosed and monitored by the polymerase chain reaction. J Antimicrob Chemother. 2003;52:441–449.
    1. Zulantay I, Honores P, Solari A, Apt W, Ortiz S, et al. Use of polymerase chain reaction (PCR) and hybridization assays to detect Trypanosoma cruzi in chronic chagasic patients treated with itraconazole or allopurinol. Diagn Microbiol Infect Dis. 2004;48:253–257.
    1. Claes F, Deborggraeve S, Verloo D, Mertens P, Crowther JR, et al. Validation of a PCR-oligochromatography test for detection of Trypanozoon parasites in a multicenter collaborative trial. J Clin Microbiol. 2007;45:3785–3787.
    1. Diez M, Favaloro L, Bertolotti A, Burgos JM, Vigliano C, et al. Usefulness of PCR strategies for early diagnosis of Chagas' disease reactivation and treatment follow-up in heart transplantation. Am J Transplant. 2007;7:1633–1640.
    1. Piron M, Fisa R, Casamitjana N, Lopez-Chejade P, Puig L, et al. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 2007;103:195–200.
    1. Britto CC. Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):122–135.
    1. Deborggraeve S, Coronado X, Solari A, Zulantay I, Apt W, et al. T. cruzi OligoC-TesT: a simplified and standardized polymerase chain reaction format for diagnosis of Chagas disease. PLoS Negl Trop Dis. 2009;3:e450.
    1. Duffy T, Bisio M, Altcheh J, Burgos JM, Diez M, et al. Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients. PLoS Negl Trop Dis. 2009;3:e419.
    1. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–1054.
    1. Vargas N, Pedroso A, Zingales B. Chromosomal polymorphism, gene synteny and genome size in T. cruzi I and T. cruzi II groups. Mol Biochem Parasitol. 2004;138:131–141.
    1. Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, et al. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol. 2009;39:1305–1317.
    1. Telleria J, Lafay B, Virreira M, Barnabe C, Tibayrenc M, et al. Trypanosoma cruzi: sequence analysis of the variable region of kinetoplast minicircles. Exp Parasitol. 2006;114:279–288.
    1. Ienne S, Pedroso A, Carmona EFR, Briones MR, Zingales B. Network genealogy of 195-bp satellite DNA supports the superimposed hybridization hypothesis of Trypanosoma cruzi evolutionary pattern. Infect Genet Evol. 2010;10:601–606.
    1. Ehrlich G, Greenberg S. Boston: Blackwell Scientific Publications; 1994. PCR-Based Diagnostics for Infectious Disease.698
    1. Brisse S, Verhoef J, Tibayrenc M. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol. 2001;31:1218–1226.
    1. Burgos JM, Altcheh J, Bisio M, Duffy T, Valadares HM, et al. Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int J Parasitol. 2007;37:1319–1327.
    1. Sambrook J, Russell D, editors. New York: Cold Spring Harbor Laboratory Press; 2001. Molecular cloning: A Laboratory Manual.
    1. Avila HA, Sigman DS, Cohen LM, Millikan RC, Simpson L. Polymerase chain reaction amplification of Trypanosoma cruzi kinetoplast minicircle DNA isolated from whole blood lysates: diagnosis of chronic Chagas' disease. Mol Biochem Parasitol. 1991;48:211–221.
    1. Britto C, Cardoso MA, Wincker P, Morel CM. A simple protocol for the physical cleavage of Trypanosoma cruzi kinetoplast DNA present in blood samples and its use in polymerase chain reaction (PCR)-based diagnosis of chronic Chagas disease. Mem Inst Oswaldo Cruz. 1993;88:171–172.
    1. Taha MK, Alonso JM, Cafferkey M, Caugant DA, Clarke SC, et al. Interlaboratory comparison of PCR-based identification and genogrouping of Neisseria meningitidis. J Clin Microbiol. 2005;43:144–149.
    1. Malorny B, Hoorfar J, Bunge C, Helmuth R. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol. 2003;69:290–296.
    1. Sturm NR, Degrave W, Morel C, Simpson L. Sensitive detection and schizodeme classification of Trypanosoma cruzi cells by amplification of kinetoplast minicircle DNA sequences: use in diagnosis of Chagas' disease. Mol Biochem Parasitol. 1989;33:205–214.
    1. Marcet PL, Duffy T, Cardinal MV, Burgos JM, Lauricella MA, et al. PCR-based screening and lineage identification of Trypanosoma cruzi directly from faecal samples of triatomine bugs from northwestern Argentina. Parasitology. 2006;132:57–65.
    1. Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, et al. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 2008
    1. Bisio M, Cura C, Duffy T, Altcheh J, Giganti SO, et al. Trypanosoma cruzi discrete typing units in Chagas disease patients with HIV co-infection. Rev Biomed. 2009;20:166–178.
    1. Lewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, et al. Genotyping of Trypanosoma cruzi: systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am J Trop Med Hyg. 2009;81:1041–1049.
    1. Burgos JM, Diez M, Vigliano C, Bisio M, Risso M, et al. Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clin Infect Dis. 2010;51:485–495.
    1. de Freitas JM, Augusto-Pinto L, Pimenta JR, Bastos-Rodrigues L, Goncalves VF, et al. Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLoS Pathog. 2006;2:e24.
    1. Herrera C, Bargues MD, Fajardo A, Montilla M, Triana O, et al. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol. 2007;7:535–539.
    1. Cura CI, Mejia-Jaramillo AM, Duffy T, Burgos JM, Rodriguero M, et al. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int J Parasitol 2010
    1. Elias MC, Vargas NS, Zingales B, Schenkman S. Organization of satellite DNA in the genome of Trypanosoma cruzi. Mol Biochem Parasitol. 2003;129:1–9.
    1. de Souza W. Novel cell biology of Trypanosoma cruzi. In: Tyler KM, Miles MA, editors. American Trypanosomiasis. Boston: Springer; 2003. pp. 13–24.
    1. Kirchhoff LV, Votava JR, Ochs DE, Moser DR. Comparison of PCR and microscopic methods for detecting Trypanosoma cruzi. J Clin Microbiol. 1996;34:1171–1175.
    1. Virreira M, Torrico F, Truyens C, Alonso-Vega C, Solano M, et al. Comparison of polymerase chain reaction methods for reliable and easy detection of congenital Trypanosoma cruzi infection. Am J Trop Med Hyg. 2003;68:574–582.
    1. Ramirez JD, Guhl F, Umezawa ES, Morillo CA, Rosas F, et al. Evaluation of adult chronic Chagas' heart disease diagnosis by molecular and serological methods. J Clin Microbiol. 2009;47:3945–3951.
    1. Hoorfar J, Cook N, Malorny B, Wagner M, De Medici D, et al. Diagnostic PCR: making internal amplification control mandatory. Lett Appl Microbiol. 2004;38:79–80.
    1. Anonymous Microbiology of Food and Animal Feeding Stuffs –Polymerase Chain Reaction (PCR) for the Detection of Foodborne Pathogens – General Method Specific Requirements. 2002b. Draft International Standard ISO/DIS 22174. Berlin, Germany.
    1. Alarcon de Noya B, Diaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, et al. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis. 2010;201:1308–1315.
    1. Miyamoto CT, Gomes ML, Marangon AV, de Araujo SM, Bahia MT, et al. Usefulness of the polymerase chain reaction for monitoring cure of mice infected with different Trypanosoma cruzi clonal genotypes following treatment with benznidazole. Exp Parasitol. 2008;120:45–49.
    1. Zulantay I, Apt W, Gil LC, Rocha C, Mundaca K, et al. The PCR-based detection of Trypanosoma cruzi in the faeces of Triatoma infestans fed on patients with chronic American trypanosomiasis gives higher sensitivity and a quicker result than routine xenodiagnosis. Ann Trop Med Parasitol. 2007;101:673–679.

Source: PubMed

3
Iratkozz fel