Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD

Chantal M Lemoine S, Emily P Brigham, Han Woo, Corrine K Hanson, Meredith C McCormack, Abigail Koch, Nirupama Putcha, Nadia N Hansel, Chantal M Lemoine S, Emily P Brigham, Han Woo, Corrine K Hanson, Meredith C McCormack, Abigail Koch, Nirupama Putcha, Nadia N Hansel

Abstract

Background: Omega-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and derivatives, play a key role in the resolution of inflammation. Higher intake has been linked to decreased morbidity in several diseases, though effects on respiratory diseases like COPD are understudied.

Methods: The National Health and Nutrition Examination Survey (NHANES), with a focus on dietary assessment, provides a unique opportunity to explore relationships between omega-3 intake and morbidity in respiratory diseases marked by inflammation in the United States (US) population. We investigated relationships between ALA or EPA + DHA intake and respiratory symptoms among US adults with COPD, as well as variation in relationships based on personal characteristics or exposures.

Results: Of 878 participants, mean age was 60.6 years, 48% were current smokers, and 68% completed high school. Omega-3 intake was, 1.71 ± 0.89 g (ALA), and 0.11 ± 0.21 g (EPA + DHA). Logistic regression models, adjusting for age, gender, race, body mass index, FEV1, education, smoking status, pack-years, total caloric intake, and omega-6 (linoleic acid, LA) intake demonstrated no primary associations between omega-3 intake and respiratory symptoms. Interaction terms were used to determine potential modification of relationships by personal characteristics (race, gender, education) or exposures (LA intake, smoking status), demonstrating that at lower levels of LA intake, increasing ALA intake was associated with reduced odds of chronic cough (pint = 0.015) and wheeze (pint = 0.037). EPA + DHA, but not ALA, was associated with reduced symptoms only among current smokers who did not complete high school.

Conclusions: Individual factors should be taken into consideration when studying the association of fatty acid intake on respiratory diseases, as differential responses may reveal susceptible subgroups.

Keywords: COPD; Education; Fatty acid; Omega; Smoking.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Relationship between ALA Intake and Odds of Respiratory Symptoms is Modified by LA Intake in U.S. Adults with COPD. Odds of chronic cough (Panel A) and wheeze (Panel B) per 1 g increase in ALA. ALA and LA included simultaneously in logistic regression models adjusting for age, gender, race, education, smoking status, FEV1, caloric intake, BMI, and pack-years
Fig. 2
Fig. 2
Relationship between EPA + DHA Intake and Respiratory Symptoms is Modified by Socioeconomic and Smoking Status Among U.S. Adults with COPD. 3-way interaction analyses between education, smoking status, and EPA + DHA. Symptoms with a significant interaction are shown (nocturnal wheeze excluded, pintx = 0.767). Logistic regression models adjusted for age, gender, race, FEV1, caloric intake, BMI, pack-years, and omega-6 (LA) intake. (<high school, former smoker: n = 133; <high school, current smoker: n = 149; >high school, former smoker, n = 323; >high school, current smoker, n = 273) *denotes statistical significance within stratified analyses for p < 0.05

References

    1. Oh JY, Sin DD. Lung inflammation in COPD: why does it matter? F1000 Med Rep. 2012;4:23. doi: 10.3410/M4-23.
    1. Berthon BS, Wood LG. Nutrition and respiratory health--feature review. Nutrients. 2015;7(3):1618–1643. doi: 10.3390/nu7031618.
    1. de Batlle J, Sauleda J, Balcells E, Gomez FP, Mendez M, Rodriguez E, et al. Association between Omega3 and Omega6 fatty acid intakes and serum inflammatory markers in COPD. J Nutr Biochem. 2012;23(7):817–821. doi: 10.1016/j.jnutbio.
    1. Julia C, Touvier M, Meunier N, Papet I, Galan P, Hercberg S, et al. Intakes of PUFAs were inversely associated with plasma C-reactive protein 12 years later in a middle-aged population with vitamin E intake as an effect modifier. J Nutr. 2013;143(11):1760–1766. doi: 10.3945/jn.113.180943.
    1. Deckelbaum RJ, Torrejon C. The Omega-3 Fatty Acid Nutritional Landscape: Health Benefits and Sources. J Nutr. 2012;142(3):587S–591S. doi: 10.3945/jn.111.148080.
    1. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol. 2016;785:144–155. doi: 10.1016/j.ejphar.2015.11.001.
    1. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41–48. doi: 10.1016/j.plefa.2018.03.004.
    1. Jain AP, Aggarwal KK, Zhang PY. Omega-3 fatty acids and cardiovascular disease. Eur Rev Med Pharmacol Sci. 2015;19(3):441–445.
    1. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21(6):495–505. doi: 10.1080/07315724.2002.10719248.
    1. Papamichael MM, Shrestha SK, Itsiopoulos C, Erbas B. The role of fish intake on asthma in children: a meta-analysis of observational studies. Pediatr Allergy Immunol. 2018;29(4):350–360. doi: 10.1111/pai.12889.
    1. Ahmadi A, Haghighat N, Hakimrabet M, Tolide-ie H. Nutritional evaluation in chronic obstructive pulmonary disease patients. Pak J Biol Sci. 2012;15(10):501–505. doi: 10.3923/pjbs.2012.501.505.
    1. Wood LG. Omega-3 polyunsaturated fatty acids and chronic obstructive pulmonary disease. Curr Opin Clin Nutr Metab Care. 2015;18(2):128–132. doi: 10.1097/MCO.0000000000000142.
    1. Centers for Disease Control and Prevention (CDC): National Center for Health Statistics (NCHS): National Health and Nutrition Examination Survey. In Edited by. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2007–2012. . Accessed Sept 2017.
    1. Jamieson DB, Matsui EC, Belli A, McCormack MC, Peng E, Pierre-Louis S, et al. Effects of allergic phenotype on respiratory symptoms and exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(2):187–192. doi: 10.1164/rccm.201211-2103OC.
    1. Hanson C, Lyden E, Rennard S, Mannino DM, Rutten EP, Hopkins R, et al. The relationship between dietary Fiber intake and lung function in the National Health and nutrition examination surveys. Ann Am Thorac Soc. 2016;13(5):643–650. doi: 10.1513/AnnalsATS.201509-609OC.
    1. Raper N, Perloff B, Ingwersen L, Steinfeldt L, Anand J. An overview of USDA's dietary intake data system. Subtopical Plant Science. 2004;17(3–4):545. doi: 10.1016/j.jfca.2004.02.013.
    1. Nordgren TM, Lyden E, Anderson-Berry A, Hanson C. Omega-3 Fatty Acid Intake of Pregnant Women and Women of Childbearing Age in the United States: Potential for Deficiency? Nutrients. 2017 Feb;(3):26–9. 10.3390/nu9030197, 10.3390/nu9030197.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretive Strategis for lung function tests. Eur Respir J. 2005;26:948–968. doi: 10.1183/09031936.05.00035205.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300.
    1. Kris-Etherton PM, Innis S, Ammerican Dietetic A. Dietitians of C. position of the American Dietetic association and dietitians of Canada: dietary fatty acids. J Am Diet Assoc. 2007;107(9):1599–1611.
    1. Varraso R, Fung TT, Hu FB, Willett W, Camargo CA. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US men. Thorax. 2007;62(9):786–791. doi: 10.1136/thx.2006.074534.
    1. Varraso Raphaëlle, Fung Teresa T, Barr R Graham, Hu Frank B, Willett Walter, Camargo Carlos A. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US women. The American Journal of Clinical Nutrition. 2007;86(2):488–495. doi: 10.1093/ajcn/86.2.488.
    1. Zheng PF, Shu L, Si CJ, Zhang XY, Yu XL, Gao W. Dietary patterns and chronic obstructive pulmonary disease: a meta-analysis. COPD. 2016;13(4):515–522. doi: 10.3109/15412555.2015.1098606.
    1. Shaheen SO, Jameson KA, Syddall HE, Aihie Sayer A, Dennison EM, Cooper C, et al. The relationship of dietary patterns with adult lung function and COPD. Eur Respir J. 2010;36(2):277–284. doi: 10.1183/09031936.00114709.
    1. Brigham EP, Steffen LM, London SJ, Boyce D, Diette GB, Hansel NN, et al. Diet pattern and respiratory morbidity in the atherosclerosis risk in communities study. Ann Am Thorac Soc. 2018;15(6):675–682. doi: 10.1513/AnnalsATS.201707-571OC.
    1. Yazdanpanah L, Paknahad Z, Moosavi AJ, Maracy MR, Zaker MM. The relationship between different diet quality indices and severity of airflow obstruction among COPD patients. Med J Islam Repub Iran. 2016;30:380.
    1. Shahar E, Folsom AR, Melnick SL, Tockman MS, Comstock GW, Gennaro V, et al. Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. Atherosclerosis risk in communities study investigators. N Engl J Med. 1994;331(4):228–233. doi: 10.1056/NEJM199407283310403.
    1. Sciccitano P, Cameli M, Maiello M, Modesti P, Muiesan M, Novo S, et al. Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J Funct Foods. 2014;6:11–32. doi: 10.1016/j.jff.2013.12.006.
    1. Hwang Y, Ho Y. Nutraceutical support for respiratory diseases. Food Sci Human Wellness. 2018;7(3):205–208. doi: 10.1016/j.fshw.2018.09.001.
    1. Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2(6):611–625. doi: 10.3390/nu2060611.
    1. Lopez-Vicario C, Rius B, Alcaraz-Quiles J, Garcia-Alonso V, Lopategi A, Titos E, et al. Pro-resolving mediators produced from EPA and DHA: overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases. Eur J Pharmacol. 2016;785:133–143. doi: 10.1016/j.ejphar.2015.03.092.
    1. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355–374. doi: 10.3390/nu2030355.
    1. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7(2):a016311. doi: 10.1101/cshperspect.a016311.
    1. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005;45(5):581–597. doi: 10.1051/rnd:2005047.
    1. Ren J, Chung SH. Anti-inflammatory effect of alpha-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-kappaB and mitogen-activated protein kinase pathways. J Agric Food Chem. 2007;55(13):5073–5080. doi: 10.1021/jf0702693.
    1. Pauls SD, Rodway LA, Winter T, Taylor CG, Zahradka P, Aukema HM. Anti-inflammatory effects of alpha-linolenic acid in M1-like macrophages are associated with enhanced production of oxylipins from alpha-linolenic and linoleic acid. J Nutr Biochem. 2018;57:121–129. doi: 10.1016/j.jnutbio.2018.03.020.
    1. Gold DR, Litonjua AA, Carey VJ, Manson JE, Buring JE, Lee IM, et al. Lung VITAL: rationale, design, and baseline characteristics of an ancillary study evaluating the effects of vitamin D and/or marine omega-3 fatty acid supplements on acute exacerbations of chronic respiratory disease, asthma control, pneumonia and lung function in adults. Contemp Clin Trials. 2016;47:185–195. doi: 10.1016/j.cct.2016.01.003.
    1. [Internet]. 2018. Available from: . Accessed July 2018.
    1. Gerster H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res. 1998;68(3):159–173.
    1. Burns JL, Nakamura MT, Ma DWL. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot Essent Fatty Acids. 2018;135:1–4. doi: 10.1016/j.plefa.2018.05.004.
    1. Koyama A, Houston DK, Simonsick EM, Lee JS, Ayonayon HN, Shahar DR, et al. Association between the Mediterranean diet and cognitive decline in a biracial population. J Gerontol A Biol Sci Med Sci. 2015;70(3):354–359. doi: 10.1093/gerona/glu097.
    1. Leng S, Picchi MA, Tesfaigzi Y, Wu G, Gauderman WJ, Xu F, et al. Dietary nutrients associated with preservation of lung function in Hispanic and non-Hispanic white smokers from New Mexico. Int J Chron Obstruct Pulmon Dis. 2017;12:3171–3181. doi: 10.2147/COPD.S142237.
    1. He J, Gu D, Chen J, Jaquish CE, Rao DC, Hixson JE, et al. Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens. 2009;27(1):48–54. doi: 10.1097/HJH.0b013e328316bb87.
    1. Leblanc V, Begin C, Hudon AM, Royer MM, Corneau L, Dodin S, et al. Gender differences in the long-term effects of a nutritional intervention program promoting the Mediterranean diet: changes in dietary intakes, eating behaviors, anthropometric and metabolic variables. Nutr J. 2014;13:107. doi: 10.1186/1475-2891-13-107.
    1. Rice JL, Romero KM, Galvez Davila RM, Meza CT, Bilderback A, Williams DL, et al. Association between adherence to the Mediterranean diet and asthma in Peruvian children. Lung. 2015;193(6):893–899. doi: 10.1007/s00408-015-9792-9.
    1. Ferguson JF, Patel PN, Shah RY, Mulvey CK, Gadi R, Nijjar PS, et al. Race and gender variation in response to evoked inflammation. Journal of Translational Medicine. 2013;11(63).
    1. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;(10):626–38. 10.1186/1479-5876-11-63.
    1. Moscelli G, Siciliani L, Gutacker N, Cookson R. Socioeconomic inequality of access to healthcare: Does choice explain the gradient? J Health Econ. 2018;57:290–314. doi: 10.1016/j.jhealeco.2017.06.005.
    1. Oates GR, Hamby BW, Stepanikova I, Knight SJ, Bhatt SP, Hitchcock J, et al. Social determinants of adherence to pulmonary rehabilitation for chronic obstructive pulmonary disease. COPD. 2017;14(6):610–617. doi: 10.1080/15412555.2017.1379070.
    1. Sanduzzi A, Balbo P, Candoli P, Catapano GA, Contini P, Mattei A, et al. COPD: adherence to therapy. Multidiscip Respir Med 2014;9(1):60,6958-9-60. eCollection 2014; doi: 10.1186/2049-6958-9-60.
    1. Tottenborg SS, Lange P, Johnsen SP, Nielsen H, Ingebrigtsen TS, Thomsen RW. Socioeconomic inequalities in adherence to inhaled maintenance medications and clinical prognosis of COPD. Respir Med. 2016;119:160–167. doi: 10.1016/j.rmed.2016.09.007.
    1. Kim KH, Park TS, Kim YS, Lee JS, Oh YM, Lee SD, et al. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration. Int J Chron Obstruct Pulmon Dis. 2016;11:1119–1128. doi: 10.2147/COPD.S100198.
    1. Hajat A, Hsia C, O'Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep. 2015;2(4):440–450. doi: 10.1007/s40572-015-0069-5.
    1. David A, Esson K, Perucic AM, Fitzpatrick C. Equity, social determinants, and public health programmes. Geneva: WHO; 2010. Tobacco use: equity and social determinants.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312.
    1. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159(1):179–187. doi: 10.1164/ajrccm.159.1.9712108.
    1. Guder G, Brenner S, Angermann CE, Ertl G, Held M, Sachs AP, et al. GOLD or lower limit of normal definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort-study. Respir Res. 2012;13(1):13. doi: 10.1186/1465-9921-13-13.
    1. Mohamed Hoesein FA, Zanen P, Lammers JW. Lower limit of normal or FEV1/FVC < 0.70 in diagnosing COPD: an evidence-based review. Respir Med. 2011;105(6):907–915. doi: 10.1016/j.rmed.2011.01.008.
    1. Beer-Borst S, Amado R. Validation of a self-administered 24-hour recall questionnaire used in a large-scale dietary survey. Z Ernahrungswiss. 1995;34(3):183–189. doi: 10.1007/BF01623156.
    1. Willett WC. Nutritional Epidemiology. 2nd Edition ed. New York: Oxford University Press; 1998.
    1. Lewis DR, Clegg LX, Johnson NJ. Lung disease mortality in the United States: the National Longitudinal Mortality Study. Int J Tuberc Lung Dis. 2009;13(8):1008–1014.
    1. Sahni S, Talwar A, Khanijo S, Talwar A. Socioeconomic status and its relationship to chronic respiratory disease. Adv Respir Med. 2017;85(2):97–108. doi: 10.5603/ARM.2017.0016.
    1. Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health. 1992;82(6):816–820. doi: 10.2105/AJPH.82.6.816.

Source: PubMed

3
Iratkozz fel