Phenotyping of Chronic Obstructive Pulmonary Disease Based on the Integration of Metabolomes and Clinical Characteristics

Kalle Kilk, Argo Aug, Aigar Ottas, Ursel Soomets, Siiri Altraja, Alan Altraja, Kalle Kilk, Argo Aug, Aigar Ottas, Ursel Soomets, Siiri Altraja, Alan Altraja

Abstract

Apart from the refined management-oriented clinical stratification of chronic obstructive pulmonary disease (COPD), the molecular pathologies behind this highly prevalent disease have remained obscure. The aim of this study was the characterization of patients with COPD, based on the metabolomic profiling of peripheral blood and exhaled breath condensate (EBC) within the context of defined clinical and demographic variables. Mass-spectrometry-based targeted analysis of serum metabolites (mainly amino acids and lipid species), untargeted profiles of serum and EBC of patients with COPD of different clinical characteristics (n = 25) and control individuals (n = 21) were performed. From the combined clinical/demographic and metabolomics data, associations between clinical/demographic and metabolic parameters were searched and a de novo phenotyping for COPD was attempted. Adjoining the clinical parameters, sphingomyelins were the best to differentiate COPD patients from controls. Unsaturated fatty acid-containing lipids, ornithine metabolism and plasma protein composition-associated signals from the untargeted analysis differentiated the Global Initiative for COPD (GOLD) categories. Hierarchical clustering did not reveal a clinical-metabolomic stratification superior to the strata set by the GOLD consensus. We conclude that while metabolomics approaches are good for finding biomarkers and clarifying the mechanism of the disease, there are no distinct co-variate independent clinical-metabolic phenotypes.

Keywords: GOLD stratification; chronic obstructive pulmonary disease; exhaled breath condensate; metabolomics; phenotyping; sphingomyelin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The principal flowchart of the study on integrated use of non-metabolomic variables and metabolomics-based biomarkers to phenotype COPD.
Figure 2
Figure 2
Volcano plot of the fold change (x-axis) vs. the significance of the change (y-axis) in the individual parameters between the patients with chronic obstructive pulmonary disease (COPD) and the control individuals. All clinical and demographic data and metabolic profile of exhaled breath condensate and serum including targeted analyses of the metabolites in serum were included except the dichotomous variable of smoking history (statuses of current or ex-smoker). Positive change indicates higher concentration or value for the patients with COPD. The most significantly different parameters, metabolites, and m/z values from metabolite profiles are annotated. Bn—signals from serum metabolic profile in negative ionization mode followed by the mass and charge ratio value; FEV1, forced expiratory volume in one second; FVC, forced expiratory volume; SM—sphingomyelin, followed by hydrocarbon chain length and number of double bonds. % indicated percent predicted for FEV1, FVC, and FEV1/FVC.
Figure 3
Figure 3
Principal component analysis of clinical and demographic data and metabolic profile of exhaled breath condensate and serum (including targeted analyses of the metabolites in serum) of the patients with chronic obstructive pulmonary disease (COPD, empty triangles) and the control individuals (solid circles). The percentage in parenthesis indicates the fraction from total variance explained by the respective principal component. (a) Principal components 1 and 2; (b) principal components 3 and 5.
Figure 4
Figure 4
Sparse partial least squares discriminant analysis (sPLSDA), based on clinical and demographic data and metabolic profile of exhaled breath condensate and serum including targeted analyses of the metabolites in serum from the patients with chronic obstructive pulmonary disease (COPD) and the control individuals (solid circles) enrolled for the integrated metabolomics-clinical/demographic phenotyping analyses. A–D, patients with COPD at GOLD (The Global Initiative for COPD) stages A–D [5].
Figure 5
Figure 5
The flowchart of de novo phenotyping on integrated use of non-metabolomic variables and metabolomics-based biomarkers to phenotype COPD. COPD, chronic obstructive pulmonary disease; EBC, exhaled breath condensate; GOLD, global initiative for COPD; PCA, principal component analysis; sPLSDA, sparse partial least squares determinant analysis.
Figure 6
Figure 6
Hierarchical clustering of the patients with chronic obstructive pulmonary disease (COPD) (n = 25) enrolled for the integrated metabolomics-clinical/demographic phenotyping analyses, based on the 5 main principal components of the complete data. The letters A–D indicate how the individual patients with COPD at GOLD (The Global Initiative for COPD [5]) stages A–D, respectively, are allocated. The optimal number of subclasses/clusters by the Calinski-Harabasz psudo F-statistic was six.

References

    1. Ito K., Barnes P.J. Copd as a disease of accelerated lung aging. Chest. 2009;135:173–180. doi: 10.1378/chest.08-1419.
    1. Mathers C.D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442. doi: 10.1371/journal.pmed.0030442.
    1. Diaz-Guzman E., Mannino D.M. Epidemiology and prevalence of chronic obstructive pulmonary disease. Clin. Chest Med. 2014;35:7–16. doi: 10.1016/j.ccm.2013.10.002.
    1. Lopez A.D., Shibuya K., Rao C., Mathers C.D., Hansell A.L., Held L.S., Schmid V., Buist S. Chronic obstructive pulmonary disease: Current burden and future projections. Eur. Respir. J. 2006;27:397–412. doi: 10.1183/09031936.06.00025805.
    1. Global Initiative for Chronic Obstructive Lung Disease (Gold) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (Updated 2014) [(accessed on 15 December 2016)]; Available online: .
    1. Rennard S.I. Copd: Overview of definitions, epidemiology, and factors influencing its development. Chest. 1998;113:235S–241S. doi: 10.1378/chest.113.4_Supplement.235S.
    1. Cohen J.S., Miles M.C., Donohue J.F., Ohar J.A. Dual therapy strategies for copd: The scientific rationale for lama + laba. Int. J. Chron. Obstruct. Pulmon Dis. 2016;11:785–797.
    1. Rabe K.F., Hurd S., Anzueto A., Barnes P.J., Buist S.A., Calverley P., Fukuchi Y., Jenkins C., Rodriguez-Roisin R., van Weel C., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: Gold executive summary. Am. J. Respir. Crit. Care Med. 2007;176:532–555. doi: 10.1164/rccm.200703-456SO.
    1. Rennard S.I., Locantore N., Delafont B., Tal-Singer R., Silverman E.K., Vestbo J., Miller B.E., Bakke P., Celli B., Calverley P.M., et al. Identification of five chronic obstructive pulmonary disease subgroups with different prognoses in the eclipse cohort using cluster analysis. Ann. Am. Thorac. Soc. 2015;12:303–312. doi: 10.1513/AnnalsATS.201403-125OC.
    1. Huertas A., Palange P. Copd: A multifactorial systemic disease. Ther. Adv. Respir. Dis. 2011;5:217–224. doi: 10.1177/1753465811400490.
    1. Han M.K., Agusti A., Calverley P.M., Celli B.R., Criner G., Curtis J.L., Fabbri L.M., Goldin J.G., Jones P.W., Macnee W., et al. Chronic obstructive pulmonary disease phenotypes: The future of copd. Am. J. Respir. Crit. Care Med. 2010;182:598–604. doi: 10.1164/rccm.200912-1843CC.
    1. From the Global Strategy for the Diagnosis, Management and Prevention of Copd, Global Initiative for Chronic Obstructive Lung Disease (Gold) 2017. [(accessed on 27 December 2016)]; Available online: .
    1. Snoeck-Stroband J.B., Lapperre T.S., Sterk P.J., Hiemstra P.S., Thiadens H.A., Boezen H.M., ten Hacken N.H., Kerstjens H.A., Postma D.S., Timens W., et al. Prediction of long-term benefits of inhaled steroids by phenotypic markers in moderate-to-severe copd: A randomized controlled trial. PLoS ONE. 2015;10:e0143793. doi: 10.1371/journal.pone.0143793.
    1. Pillai S.G., Kong X., Edwards L.D., Cho M.H., Anderson W.H., Coxson H.O., Lomas D.A., Silverman E.K. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010;182:1498–1505. doi: 10.1164/rccm.201002-0151OC.
    1. Garcia-Aymerich J., Gomez F.P., Benet M., Farrero E., Basagana X., Gayete A., Pare C., Freixa X., Ferrer J., Ferrer A., et al. Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax. 2011;66:430–437. doi: 10.1136/thx.2010.154484.
    1. Burgel P.R., Paillasseur J.L., Caillaud D., Tillie-Leblond I., Chanez P., Escamilla R., Court-Fortune I., Perez T., Carre P., Roche N. Clinical copd phenotypes: A novel approach using principal component and cluster analyses. Eur. Respir. J. 2010;36:531–539. doi: 10.1183/09031936.00175109.
    1. Devanarayan V., Scholand M.B., Hoidal J., Leppert M.F., Crackower M.A., O’Neill G.P., Gervais F.G. Identification of distinct plasma biomarker signatures in patients with rapid and slow declining forms of copd. COPD. 2010;7:51–58. doi: 10.3109/15412550903499530.
    1. Barnes P.J. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin. Chest Med. 2014;35:71–86. doi: 10.1016/j.ccm.2013.10.004.
    1. Ghosh N., Dutta M., Singh B., Banerjee R., Bhattacharyya P., Chaudhury K. Transcriptomics, proteomics and metabolomics driven biomarker discovery in copd: An update. Expert Rev. Mol. Diagn. 2016;16:897–913. doi: 10.1080/14737159.2016.1198258.
    1. Shaw J.G., Vaughan A., Dent A.G., O’Hare P.E., Goh F., Bowman R.V., Fong K.M., Yang I.A. Biomarkers of progression of chronic obstructive pulmonary disease (COPD) J. Thorac. Dis. 2014;6:1532–1547.
    1. Kaddurah-Daouk R., Kristal B.S., Weinshilboum R.M. Metabolomics: A global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol. 2008;48:653–683. doi: 10.1146/annurev.pharmtox.48.113006.094715.
    1. Auffray C., Adcock I.M., Chung K.F., Djukanovic R., Pison C., Sterk P.J. An integrative systems biology approach to understanding pulmonary diseases. Chest. 2010;137:1410–1416. doi: 10.1378/chest.09-1850.
    1. Kuban P., Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal. Chim. Acta. 2013;805:1–18. doi: 10.1016/j.aca.2013.07.049.
    1. Lim M.Y., Thomas P.S. Biomarkers in exhaled breath condensate and serum of chronic obstructive pulmonary disease and non-small-cell lung cancer. Int. J. Chronic. Dis. 2013;2013:578613. doi: 10.1155/2013/578613.
    1. De Laurentiis G., Paris D., Melck D., Maniscalco M., Marsico S., Corso G., Motta A., Sofia M. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur. Respir. J. 2008;32:1175–1183. doi: 10.1183/09031936.00072408.
    1. De Laurentiis G., Paris D., Melck D., Montuschi P., Maniscalco M., Bianco A., Sofia M., Motta A. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J. Proteome Res. 2013;12:1502–1511. doi: 10.1021/pr301171p.
    1. Paige M., Burdick M.D., Kim S., Xu J., Lee J.K., Shim Y.M. Pilot analysis of the plasma metabolite profiles associated with emphysematous chronic obstructive pulmonary disease phenotype. Biochem. Biophys. Res. Commun. 2011;413:588–593. doi: 10.1016/j.bbrc.2011.09.006.
    1. Zabek A., Stanimirova I., Deja S., Barg W., Kowal A., Korzeniewska A., Orczyk-Pawilowicz M., Baranowski D., Gdaniec Z., Jankowska R., et al. Fusion of the 1h nmr data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metabolomics. 2015;11:1563–1574. doi: 10.1007/s11306-015-0808-5.
    1. Konstantinidi E.M., Lappas A.S., Tzortzi A.S., Behrakis P.K. Exhaled breath condensate: Technical and diagnostic aspects. Sci. World J. 2015;2015:435160. doi: 10.1155/2015/435160.
    1. Cantin A.M., Richter M.V. Cigarette smoke-induced proteostasis imbalance in obstructive lung diseases. Curr. Mol. Med. 2012;12:836–849. doi: 10.2174/156652412801318746.
    1. Toljamo T., Hamari A., Sotkasiira M., Nieminen P. Clinical characteristics of copd syndrome: A 6-year follow-up study of adult smokers. Ann. Med. 2015;47:399–405. doi: 10.3109/07853890.2015.1045551.
    1. Bowler R.P., Jacobson S., Cruickshank C., Hughes G.J., Siska C., Ory D.S., Petrache I., Schaffer J.E., Reisdorph N., Kechris K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am. J. Respir. Crit. Care Med. 2015;191:275–284. doi: 10.1164/rccm.201410-1771OC.
    1. Agarwal A.R., Yin F., Cadenas E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am. J. Respir. Cell Mol. Biol. 2014;51:284–293. doi: 10.1165/rcmb.2013-0523OC.
    1. Agarwal A.R., Yin F., Cadenas E. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure. Am. J. Physiol. Lung Cell Mol. Physiol. 2013;305:L764–L773. doi: 10.1152/ajplung.00165.2013.
    1. Robichaud P.P., Surette M.E. Polyunsaturated fatty acid-phospholipid remodeling and inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 2015;22:112–118. doi: 10.1097/MED.0000000000000138.
    1. Baudiss K., Ayata C.K., Lazar Z., Cicko S., Beckert J., Meyer A., Zech A., Vieira R.P., Bittman R., Gomez-Munoz A., et al. Ceramide-1-phosphate inhibits cigarette smoke-induced airway inflammation. Eur. Respir. J. 2015;45:1669–1680. doi: 10.1183/09031936.00080014.
    1. Petrusca D.N., Gu Y., Adamowicz J.J., Rush N.I., Hubbard W.C., Smith P.A., Berdyshev E.V., Birukov K.G., Lee C.H., Tuder R.M., et al. Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J. Biol. Chem. 2010;285:40322–40332. doi: 10.1074/jbc.M110.137604.
    1. Telenga E.D., Hoffmann R.F., Ruben T.K., Hoonhorst S.J., Willemse B.W., van Oosterhout A.J., Heijink I.H., van den Berge M., Jorge L., Sandra P., et al. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am. J. Respir. Crit. Care Med. 2014;190:155–164. doi: 10.1164/rccm.201312-2210OC.
    1. Conlon T.M., Bartel J., Ballweg K., Gunter S., Prehn C., Krumsiek J., Meiners S., Theis F.J., Adamski J., Eickelberg O., et al. Metabolomics screening identifies reduced l-carnitine to be associated with progressive emphysema. Clin. Sci. 2016;130:273–287. doi: 10.1042/CS20150438.
    1. Ingenito E.P., Tsai L.W., Majumdar A., Suki B. On the role of surface tension in the pathophysiology of emphysema. Am. J. Respir. Crit. Care Med. 2005;171:300–304. doi: 10.1164/rccm.200406-770PP.
    1. Ubhi B.K., Cheng K.K., Dong J., Janowitz T., Jodrell D., Tal-Singer R., MacNee W., Lomas D.A., Riley J.H., Griffin J.L., et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with copd. Mol. Biosyst. 2012;8:3125–3133. doi: 10.1039/c2mb25194a.
    1. Ubhi B.K., Riley J.H., Shaw P.A., Lomas D.A., Tal-Singer R., MacNee W., Griffin J.L., Connor S.C. Metabolic profiling detects biomarkers of protein degradation in copd patients. Eur. Respir. J. 2012;40:345–355. doi: 10.1183/09031936.00112411.
    1. Dupont L.L., Glynos C., Bracke K.R., Brouckaert P., Brusselle G.G. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Pulm. Pharmacol. Ther. 2014;29:1–6. doi: 10.1016/j.pupt.2014.07.004.
    1. Ricciardolo F.L., Nijkamp F.P., Folkerts G. Nitric oxide synthase (NOS) as therapeutic target for asthma and chronic obstructive pulmonary disease. Curr. Drug Targets. 2006;7:721–735. doi: 10.2174/138945006777435290.
    1. Ruzsics I., Nagy L., Keki S., Sarosi V., Illes B., Illes Z., Horvath I., Bogar L., Molnar T. l-arginine pathway in copd patients with acute exacerbation: A new potential biomarker. COPD. 2016;13:139–145. doi: 10.3109/15412555.2015.1045973.
    1. Arif A.A., Mitchell C. Use of exhaled nitric oxide as a biomarker in diagnosis and management of chronic obstructive pulmonary disease. J. Prim. Care Community Health. 2016;7:102–106. doi: 10.1177/2150131915624922.
    1. Jonker R., Deutz N.E., Erbland M.L., Anderson P.J., Engelen M.P. Alterations in whole-body arginine metabolism in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2016;103:1458–1464. doi: 10.3945/ajcn.115.125187.
    1. Zinellu A., Fois A.G., Sotgia S., Sotgiu E., Zinellu E., Bifulco F., Mangoni A.A., Pirina P., Carru C. Arginines plasma concentration and oxidative stress in mild to moderate copd. PLoS ONE. 2016;11:e0160237. doi: 10.1371/journal.pone.0160237.
    1. Bestall J.C., Paul E.A., Garrod R., Garnham R., Jones P.W., Wedzicha J.A. Usefulness of the medical research council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999;54:581–586. doi: 10.1136/thx.54.7.581.
    1. Miller M.R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., van der Grinten C.P., Gustafsson P., et al. Standardisation of spirometry. Eur. Respir. J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Macintyre N., Crapo R.O., Viegi G., Johnson D.C., van der Grinten C.P., Brusasco V., Burgos F., Casaburi R., Coates A., Enright P., et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005;26:720–735. doi: 10.1183/09031936.05.00034905.
    1. Quanjer P.H., Stanojevic S., Cole T.J., Baur X., Hall G.L., Culver B.H., Enright P.L., Hankinson J.L., Ip M.S., Zheng J., et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012;40:1324–1343. doi: 10.1183/09031936.00080312.
    1. Piirila P., Seikkula T., Valimaki P. Differences between finnish and european reference values for pulmonary diffusing capacity. Int. J. Circumpolar. Health. 2007;66:449–457. doi: 10.3402/ijch.v66i5.18316.
    1. Gevenois P.A., De Vuyst P., de Maertelaer V., Zanen J., Jacobovitz D., Cosio M.G., Yernault J.C. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am. J. Respir. Crit. Care Med. 1996;154:187–192. doi: 10.1164/ajrccm.154.1.8680679.
    1. Horvath I., Hunt J., Barnes P.J., Alving K., Antczak A., Baraldi E., Becher G., van Beurden W.J., Corradi M., Dekhuijzen R., et al. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005;26:523–548. doi: 10.1183/09031936.05.00029705.
    1. Le Cao K.A., Gonzalez I., Dejean S. Integromics: An r package to unravel relationships between two omics datasets. Bioinformatics. 2009;25:2855–2856. doi: 10.1093/bioinformatics/btp515.
    1. Brock G., Pihur V., Datta S., Datta S. Clvalid: An r package for cluster validation. J. Stat. Softw. 2008;25:1–22. doi: 10.18637/jss.v025.i04.
    1. Walesiak M., Dudek A. clusterSim: Searching for Optimal Clustering Procedure for a Data Set. [(accessed on 20 January 2017)]; Available online: .
    1. Hennig C. fpc: Flexible Procedures for Clustering. [(accessed on 20 January 2017)]; Available online: .

Source: PubMed

3
Iratkozz fel