Omega-3 Eicosapentaenoic Acid (EPA) Rich Extract from the Microalga Nannochloropsis Decreases Cholesterol in Healthy Individuals: A Double-Blind, Randomized, Placebo-Controlled, Three-Month Supplementation Study

Amanda Rao, David Briskey, Jakob O Nalley, Eneko Ganuza, Amanda Rao, David Briskey, Jakob O Nalley, Eneko Ganuza

Abstract

The aim of this trial is to assess the effect of Almega®PL on improving the Omega-3 Index, cardio-metabolic parameters, and other biomarkers in generally healthy individuals. The benefits of long-chain omega-3 fatty acids for cardiovascular health are primarily built upon mixtures of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA). Highly purified EPA therapy has proven to be particularly effective in the treatment of cardiovascular disease, but less is known about the benefits of EPA-only supplementation for the general healthy population. Almega®PL is a polar rich oil (>15%) derived from the microalga Nannochloropsis that contains EPA (>25%) with no DHA. Participants (n = 120) were given a capsule of 1 g/day of either Almega®PL or placebo for 12 weeks. Differences in the Omega-3 Index, cardiometabolic markers, and other general health indicators were measured at the baseline, six, and 12 weeks. Compared to the placebo group, Almega®PL supplementation significantly increased the Omega-3 Index and EPA concentration from 4.96 ± 0.90 and 0.82 ± 0.37% at the baseline to 5.75 ± 0.90 and 1.27 ± 0.36 at week 12, respectively. Very-low-density lipoprotein cholesterol (VLDL) decreased by 25%, which resulted in a significant decrease in total cholesterol compared to the placebo. Interestingly, the decrease in VLDL was not associated with an increase in LDL, which seems to be a benefit associated with EPA-only based formulations. Collectively, these results show that Almega®PL provides a natural EPA-only option to increase EPA and manage cholesterol levels in the general population.

Keywords: Nannochloropsis; cardiovascular health; cholesterol; dietary supplements; eicosapentaenoic acid; galactolipids; long-chain omega-3 polyunsaturated fatty acids; microalgae; polar lipids; very-low-density lipoprotein.

Conflict of interest statement

E.G. and J.O.N. are employees of Qualitas Health, the biotech company that provided the Almega®PL and placebo supplements and sponsored this trial.

Figures

Figure 1
Figure 1
A total of 120 participants were randomized to receive Almega®PL or placebo treatment. Study completers (n = 104) included participants who completed the week 12 visit. Participants who dropped out were not included in the statistical analysis.
Figure 2
Figure 2
Omega-3 Index, or EPA + DHA % of total erythrocyte fatty acids, measured at baseline, week 6, and week 12. Values represented as mean ± SD, * change from baseline (Δ values) significantly different between groups, p < 0.05.
Figure 3
Figure 3
Change in total cholesterol (a), non-HDL-cholesterol (b), VLDL (c) and LDL (d) in plasma (mmol/L) of 76 participants with higher baseline cholesterol over the 12-week intervention Values represented as mean ± SEM, * change from baseline significantly different to placebo, p < 0.05.
Figure 4
Figure 4
Profile of Mood States (POMS), subscore for Vigour for both the Almega®PL group and the placebo group. Values represented as mean ± SEM, * change from baseline significantly different to placebo, p < 0.05.

References

    1. World Health Organization Cardiovascular Diseases Fact Sheet. [(accessed on 6 April 2020)]; Available online:
    1. Micha R., Peñalvo J.L., Cudhea F., Imamura F., Rehm C.D., Mozaffarian D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317:912–924. doi: 10.1001/jama.2017.0947.
    1. Murphy R.A., Yu E.A., Ciappio E.D., Mehta S., McBurney M.I. Suboptimal plasma long chain n-3 concentrations are common among adults in the United States, NHANES 2003–2004. Nutrients. 2015;7:10282–10289. doi: 10.3390/nu7125534.
    1. Institute of Medicine . New Dietary Reference Intakes Set for Energy, Carbohydrates, Fiber, Fat, Fatty Adds, Cholesterol, Proteins, and Amino Acids. 1st ed. The National Academies Press; Washington, DC, USA: 2005. pp. 1–1357.
    1. Australian Government, National Health and Medical Research Council . Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Volume 308 Australian Government, National Health and Medical Research Council; 2006.
    1. Balk E.M., Lichtenstein A.H., Chung M., Kupelnick B., Chew P., Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atherosclerosis. 2006;189:19–30. doi: 10.1016/j.atherosclerosis.2006.02.012.
    1. Bays H.E., Ballantyne C.M., Kastelein J.J., Isaacsohn J.L., Braeckman R.A., Soni P.N. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] Trial) Am. J. Cardiol. 2011;108:682–690. doi: 10.1016/j.amjcard.2011.04.015.
    1. Miller P.E., Van Elswyk M., Alexander D.D. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: A meta-analysis of randomized controlled trials. Am. J. Hypertens. 2014;27:885–896. doi: 10.1093/ajh/hpu024.
    1. Maki K.C., Palacios O.M., Bell M., Toth P.P. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps. J. Clin. Lipidol. 2017;11:1152–1160. doi: 10.1016/j.jacl.2017.07.010.
    1. Oscarsson J., Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: A review. Lipids Health Dis. 2017;16:1–13. doi: 10.1186/s12944-017-0541-3.
    1. Jacobson T.A., Glickstein S.B., Rowe J.D., Soni P.N. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: A review. J. Clin. Lipidol. 2012;6:5–18. doi: 10.1016/j.jacl.2011.10.018.
    1. Kagan M.L., West A.L., Zante C., Calder P.C. Acute appearance of fatty acids in human plasma—A comparative study between polar-lipid rich oil from the microalgae Nannochloropsis oculata and krill oil in healthy young males. Lipids Health Dis. 2013;12:1. doi: 10.1186/1476-511X-12-102.
    1. Barter P. High-density-lipoprotein cholesterol testing: Implications for clinical management. Aust. Prescr. 1994;17:99–102. doi: 10.18773/austprescr.1994.101.
    1. Harris W.S., Polreis J. Measurement of the Omega-3 Index in dried blood spots. Ann. Clin. Lab. Res. 2016;4:1–7. doi: 10.21767/2386-5180.1000137.
    1. Morfeld M., Petersen C., Krüger-Bödeker A., von Mackensen S., Bullinger M. The assessment of mood at workplace - psychometric analyses of the revised Profile of Mood States (POMS) questionnaire. Psychsoc. Med. 2007;4:1–9.
    1. Lee C.H., Giuliani F. The role of inflammation in depression and fatigue. Front. Immunol. 2019;10:1696. doi: 10.3389/fimmu.2019.01696.
    1. Smyth C. The Pittsburgh sleep quality index (PSQI) J. Gerontol. Nurs. 1999;25:10. doi: 10.3928/0098-9134-19991201-10.
    1. Stein K.D., Martin S.C., Hann D.M., Jacoben P.B. A multidimensional measure of fatigue for use with cancer patients. Cancer Pract. 1998;6:143–152. doi: 10.1046/j.1523-5394.1998.006003143.x.
    1. Lins L., Carvalho F.M. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016;4:1–12. doi: 10.1177/2050312116671725.
    1. National Institute of Health, National Cancer Institute, Food Frequency Questionnaire (FFQ), Dietary Assessment Instrument Profiles. [(accessed on 6 April 2020)]; Available online:
    1. Flock M.R., Skulas-Ray A.C., Harris W.S., Etherton T.D., Fleming J.A., Kris-Etherton P.M. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: A dose-response randomized controlled trial. J. Am. Heart Assoc. 2013;2:20–23. doi: 10.1161/JAHA.113.000513.
    1. Walker R.E., Jackson K.H., Tintle N.L., Shearer G.C., Bernasconi A., Masson S., Latini R., Heydari B., Kwong R.Y., Flock M., et al. Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am. J. Clin. Nutr. 2019;110:1034–1040. doi: 10.1093/ajcn/nqz161.
    1. The R Project for Statistical Computing V4.0.0, R Foundation for Statistical Computing, A Language and Environment for Statistical Computing, Vienna, Austria. [(accessed on 6 April 2020)]; Available online:
    1. Katan M.B., Deslypere J.P., van Birgelen A.P., Penders M., Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. J. Lipid Res. 1997;38:2012–2022.
    1. Harris W.S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 2008;87:1997–2002. doi: 10.1093/ajcn/87.6.1997S.
    1. Stark K.D., Van Elswyk M.E., Higgins M.R., Weatherford C.A., Salem N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016;63:132–152. doi: 10.1016/j.plipres.2016.05.001.
    1. Rambjør G.S., Walen A.I., Windsor S.L., Harris W.S. Eicosapentaenoic acid is primarily responsible for hypotriglyceridemic effect of fish oil in humans. Lipids. 1996;31:45–49. doi: 10.1007/BF02637050.
    1. Allaire J., Harris W.S., Vors C., Charest A., Marin J., Jackson K.H., Tchernof A., Couture P., Lamarche B. Supplementation with high-dose docosahexaenoic acid increases the Omega-3 Index more than high-dose eicosapentaenoic acid. Prostaglandins Leukot. Essent. Fatty Acids. 2017;120:8–14. doi: 10.1016/j.plefa.2017.03.008.
    1. Harris W.S., Jackson K.H. Translating plasma eicosapentaenoic acid concentrations into erythrocyte percentages of eicosapentaenoic acid plus docosahexaenoic acid during treatment with icosapent ethyl. J. Clin. Lipidol. 2019;13:771–777. doi: 10.1016/j.jacl.2019.07.001.
    1. Skulas-Ray A.C., Wilson P.W.F., Harris W.S., Brinton E.A., Kris-Etherton P.M., Richter C.K., Jacobson T.A., Engler M.B., Miller M., Robinson J.G., et al. Omega-3 fatty acids for the management of hypertriglyceridemia. A science advisory from the American Heart Association. Circulation. 2019;140:673–691. doi: 10.1161/CIR.0000000000000709.
    1. Ouguerram K., Maugeais C., Gardette J., Magot T., Krempf M. Effect of n-3 fatty acids on metabolism of apoB100-containing lipoprotein in type 2 diabetic subjects. Br. J. Nutr. 2006;96:100–106. doi: 10.1079/BJN20061806.
    1. Yokoyama M., Origasa H., Matsuzaki M., Matsuzawa Y., Saito Y., Ishikawa Y., Oikawa S., Sasaki J., Hishida H., Itakura H., et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–1098. doi: 10.1016/S0140-6736(07)60527-3.
    1. Bhatt D.L., Steg P.G., Miller M., Brinton E.A., Jacobson T.A., Ketchum S.B., Doyle R.T., Juliano R.A., Jiao L., Granowitz C., et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 2019;380:11–22. doi: 10.1056/NEJMoa1812792.
    1. AstraZeneca, Update on Phase III STRENGTH Trial for Epanova in Mixed Dyslipidaemia. [(accessed on 6 April 2020)]; Available online: .
    1. Cabral C.E., Klein M.R.S.T. Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq. Bras. Cardiol. 2017;109:475–482. doi: 10.5935/abc.20170158.
    1. Montelius C., Erlandsson D., Vitija E., Stenblom E.L., Egecioglu E., Erlanson-Albertsson C. Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women. Appetite. 2014;81:295–304. doi: 10.1016/j.appet.2014.06.101.
    1. Dyerberg J., Madsen P., Møller J.M., Aardestrup I., Schmidt E.B. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot. Essent. Fatty Acids. 2010;83:137–141. doi: 10.1016/j.plefa.2010.06.007.
    1. Chu B.S., Gunning A.P., Rich G.T., Ridout M.J., Faulks R.M., Wickham M.S., Morris V.J., Wilde P.J. Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir. 2010;26:9782–9793. doi: 10.1021/la1000446.
    1. Ohlsson L., Rosenquist A., Rehfeld J.F., Härröd M. Postprandial effects on plasma lipids and satiety hormones from intake of liposomes made from fractionated oat oil: Two randomized crossover studies. Food Nutr. Res. 2014;58:1–11. doi: 10.3402/fnr.v58.24465.
    1. Burns A.A., Livingstone M.B., Welch R.W., Dunne A., Rowland I.R. Dose-response effects of a novel fat emulsion (Olibra) on energy and macronutrient intakes up to 36h post-consumption. Eur. J. Clin. Nutr. 2002;56:368–377. doi: 10.1038/sj.ejcn.1601326.
    1. Shimokata H., Andres R., Coon P.J., Elahi D., Muller D.C., Tobin J.D. Studies in the distribution of body fat. II. Longitudinal effects of change in weight. Int. J. Obes. 1989;13:455–464.
    1. Musa-Veloso K., Binns M.A., Kocenas A., Chung C., Rice H., Oppedal-Olsen H., Lloyd H., Lemke S. Impact of low v. moderate intakes of long-chain n-3 fatty acids on risk of coronary heart disease. Br. J. Nutr. 2011;106:1129–1141. doi: 10.1017/S0007114511001644.

Source: PubMed

3
Iratkozz fel