Clinical Implications for Exercise at Altitude Among Individuals With Cardiovascular Disease: A Scientific Statement From the American Heart Association

William K Cornwell 3rd, Aaron L Baggish, Yadav Kumar Deo Bhatta, Maria Joan Brosnan, Christoph Dehnert, J Sawalla Guseh, Debra Hammer, Benjamin D Levine, Gianfranco Parati, Eugene E Wolfel, American Heart Association Exercise, Cardiac Rehabilitation, and Secondary Prevention Committee of the Council on Clinical Cardiology; and Council on Arteriosclerosis, Thrombosis and Vascular Biology, William K Cornwell 3rd, Aaron L Baggish, Yadav Kumar Deo Bhatta, Maria Joan Brosnan, Christoph Dehnert, J Sawalla Guseh, Debra Hammer, Benjamin D Levine, Gianfranco Parati, Eugene E Wolfel, American Heart Association Exercise, Cardiac Rehabilitation, and Secondary Prevention Committee of the Council on Clinical Cardiology; and Council on Arteriosclerosis, Thrombosis and Vascular Biology

Abstract

An increasing number of individuals travel to mountainous environments for work and pleasure. However, oxygen availability declines at altitude, and hypoxic environments place unique stressors on the cardiovascular system. These stressors may be exacerbated by exercise at altitude, because exercise increases oxygen demand in an environment that is already relatively oxygen deplete compared with sea-level conditions. Furthermore, the prevalence of cardiovascular disease, as well as diseases such as hypertension, heart failure, and lung disease, is high among individuals living in the United States. As such, patients who are at risk of or who have established cardiovascular disease may be at an increased risk of adverse events when sojourning to these mountainous locations. However, these risks may be minimized by appropriate pretravel assessments and planning through shared decision-making between patients and their managing clinicians. This American Heart Association scientific statement provides a concise, yet comprehensive overview of the physiologic responses to exercise in hypoxic locations, as well as important considerations for minimizing the risk of adverse cardiovascular events during mountainous excursions.

Keywords: AHA Scientific Statements; altitude; cardiovascular diseases; exercise; heart failure; hypertension; sudden cardiac death; syncope.

Conflict of interest statement

Writing Group Disclosures

[Table: see text]

Reviewer Disclosures

[Table: see text]

Figures

Figure 1. Environmental changes at altitude.
Figure 1. Environmental changes at altitude.
Classification of altitude ranges with associated reductions in the fraction of inspired oxygen (Fio 2) relative to sea level and percent reduction in functional capacity according to maximal oxygen uptake (Vo 2max) as altitude increases. Popular tourist destinations are included for reference.
Figure 2. Physiologic response to hypoxia.
Figure 2. Physiologic response to hypoxia.
Response to hypoxia at altitude involves systemic arterial vasodilatation, hypoxic pulmonary vasoconstriction, and activation of peripheral chemoreceptors, with downstream effects including sympathetic activation, which increases blood pressure and cardiac output, as well as hyperventilation and pulmonary hypertension. Adapted from Bärtsch et al. © 2007 American Heart Association, Inc.
Figure 3. Cardiovascular hemodynamic changes that occur…
Figure 3. Cardiovascular hemodynamic changes that occur in response to acute (minutes to hours) and chronic (days to weeks) exposure to hypoxia compared with sea level.
Acutely, heart rate, cardiac output, muscle flow, and stroke volume increase. However, with sustained exposure, all of these variables decrease to levels at or below sea level. Blood pressure and systemic vascular resistance decrease during acute exposure, but may increase progressively with time to levels at or above sea level values. From Baggish et al. Reprinted by permission from Springer. © 2014.
Figure 4. Pretravel assessment for patients who…
Figure 4. Pretravel assessment for patients who are at risk of adverse cardiovascular events in mountainous environments.
BP indicates blood pressure; CSA, central sleep apnea; PAP, pulmonary arterial pressure; SCD, sudden cardiac death; and Spo 2, systemic oxygen saturation.

References

    1. Levine BD. Going high with heart disease: the effect of high altitude exposure in older individuals and patients with coronary artery disease. High Alt Med Biol. 2015;16:89–96. doi: 10.1089/ham.2015.0043
    1. Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007;116:2191–2202. doi: 10.1161/CIRCULATIONAHA.106.650796
    1. Baggish AL, Wolfel EE, Levine BD. Cardiovascular system. In: Swenson E, Bärtsch P, eds. High Altitude. Springer; 2014:103–139. doi: 10.1007/978-1-4614-8772-2
    1. Lo MY, Daniels JD, Levine BD, Burtscher M. Sleeping altitude and sudden cardiac death. Am Heart J. 2013;166:71–75. doi: 10.1016/j.ahj.2013.04.003
    1. Thompson PD, Funk EJ, Carleton RA, Sturner WQ. Incidence of death during jogging in Rhode Island from 1975 through 1980. J Am Med Assoc. 1982;247:2535–2538. doi: 10.1001/jama.1982.03320430039028
    1. Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69:793–801.
    1. Levine BD, Zuckerman JH, DeFilippi R. Effect of high‐altitude exposure in the elderly. The Tenth Mountain Division Study. Circulation. 1997;96:1224–1232. doi: 10.1161/01.CIR.96.4.1224
    1. Erdmann J, Sun KT, Masar P, Niederhauser H. Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am J Cardiol. 1998;81:266–270. doi: 10.1016/S0002-9149(97)00901-6
    1. Wyss CA, Koepfli P, Fretz G, Seebauer M, Schirlo C, Kaufmann PA. Influence of altitude exposure on coronary flow reserve. Circulation. 2003;108:1202–1207. doi: 10.1161/01.CIR.0000087432.63671.2E
    1. Levy RL, Bruenn HG, Russell N. Electrocardiographic changes caused by induced anoxemia in normal persons and in patients with disease of the coronary arteries. Trans Am Clin Climatol Assoc. 1938;54:71–75.
    1. Schmid JP, Noveanu M, Gaillet R, Hellige G, Wahl A, Saner H. Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart. 2006;92:921–925. doi: 10.1136/hrt.2005.072520
    1. Morgan BJ, Alexander JK, Nicoli SA, Brammell HL. The patient with coronary heart disease at altitude—observations during acute exposure to 3100 meters. J Wilderness Med. 1990;1:147–153. doi: 10.1580/0953-9859-1.3.147
    1. de Vries ST, Komdeur P, Aalbersberg S, van Enst GC, Breeman A, van’t Hof AWJ. Effects of altitude on exercise level and heart rate in patients with coronary artery disease and healthy controls. Neth Heart J. 2010;18:118–121. doi: 10.1007/BF03091749
    1. Messerli‐Burgy N, Meyer K, Steptoe A, Laederach‐Hofmann K. Autonomic and cardiovascular effects of acute high altitude exposure after myocardial infarction and in normal volunteers. Circ J. 2009;73:1485–1491. doi: 10.1253/circj.CJ-09-0004
    1. Parati G, Bilo G, Faini A, Bilo B, Revera M, Giuliano A, Lombardi C, Caldara G, Gregorini F, Styczkiewicz K, et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high‐altitude exposure: a randomized clinical trial. Eur Heart J. 2014;35:3113–3122. doi: 10.1093/eurheartj/ehu275
    1. Parati G, Revera M, Giuliano A, Faini A, Bilo G, Gregorini F, Lisi E, Salerno S, Lombardi C, Ramos Becerra CG, et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposure. Eur Heart J. 2013;34:759–766. doi: 10.1093/eurheartj/ehs140
    1. Bilo G, Villafuerte FC, Faini A, Anza‐Ramirez C, Revera M, Giuliano A, Caravita S, Gregorini F, Lombardi C, Salvioni E, et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high altitude: the High Altitude Cardiovascular Research‐Andes study. Hypertension. 2015;65:1266–1272. doi: 10.1161/HYPERTENSIONAHA.114.05003
    1. Agostoni P, Contini M, Magini A, Apostolo A, Cattadori G, Bussotti M, Veglia F, Andreini D, Palermo P. Carvedilol reduces exercise‐induced hyperventilation: a benefit in normoxia and a problem with hypoxia. Eur J Heart Fail. 2006;8:729–735. doi: 10.1016/j.ejheart.2006.02.001
    1. Bilo G, Caldara G, Styczkiewicz K, Revera M, Lombardi C, Giglio A, Zambon A, Corrao G, Faini A, Valentini M, et al. Effects of selective and nonselective beta‐blockade on 24‐h ambulatory blood pressure under hypobaric hypoxia at altitude. J Hypertens. 2011;29:380–387. doi: 10.1097/HJH.0b013e3283409014
    1. Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, Festi L, Giardini G, Lironcurti A, Luks AM, et al. Clinical recommendations for high altitude exposure of individuals with pre‐existing cardiovascular conditions: a joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J. 2018;39:1546–1554. doi: 10.1093/eurheartj/ehx720
    1. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58:785–790. doi: 10.1152/jappl.1985.58.3.785
    1. Perrill CV. High‐altitude syncope: history repeats itself. J Am Med Assoc. 1993;269:587. doi: 10.1001/jama.1993.03500050065015
    1. Nicholas R, O'Meara PD, Calonge N. Is syncope related to moderate altitude exposure. J Am Med Assoc. 1992;268:904–906. doi: 10.1001/jama.1992.03490070086048
    1. Blaber AP, Hartley T, Pretorius PJ. Effect of acute exposure to 3,660m altitude on orthostatic responses and tolerance. J Appl Physiol. 2003;95:591–601. doi: 10.1152/japplphysiol.00749.2002
    1. Thomas KN, Burgess KR, Basnyat R, Lucas SJ, Cotter JD, Fan JL, Peebles KC, Lucas RA, Ainslie PN. Initial orthostatic hypotension at high altitude. High Alt Med Biol. 2010;11:163–167. doi: 10.1089/ham.2009.1056
    1. Horiuchi M, Dobashi S, Kuiuchi M, Endo J, Koyama K, Subudhi AW. Reduction in cerebral oxygenation after prolonged exercise in hypoxia is related to changes in blood pressure. Adv Exp Med Biol. 2016;876:95–100. doi: 10.1007/978-1-4939-3023-4_12
    1. Malconian MK, Rock P, Hultgren H, Donner H, Cymerman A, Groves B, Reeves J, Alexander J, Sutton J, Nitta M, et al. The electrocardiogram at rest and exercise during a simulated ascent of Mt. Everest (Operation Everest II). Am J Cardiol. 1990;65:1475–1480. doi: 10.1016/0002-9149(90)91358-D
    1. Woods DR, Allen S, Betts TR, Gardiner D, Montgomery H, Morgan JM, Roberts PR. High altitude arrhythmias. Cardiology. 2008;111:239–246. doi: 10.1159/000127445
    1. Grover RF, Tucker CE, McGroarty SR. The coronary stress of skiing at high altitude. Arch Intern Med. 1990;150:1205–1208. doi: 10.1001/archinte.1990.00390180045007
    1. Wu TY, Ding SQ, Liu JL, Yu MT, Jia JH, Chai ZC, Dai RC, Zhang SL, Li BY, Pan L, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai‐Tibet railroad. High Alt Med Biol. 2007;8:88–107. doi: 10.1089/ham.2007.1015
    1. Burtscher M, Pachinger O, Schocke MF, Ulmer H. Risk factor profile for sudden cardiac death during mountain hiking. Int J Sports Med. 2007;28:621–624. doi: 10.1055/s-2007-964850
    1. Burtscher M. Risk and protective factors for sudden cardiac death during leisure activities in the mountains: an update. Heart Lung Circ. 2017;26:757–762. doi: 10.1016/j.hlc.2017.01.010
    1. Kobza R, Duru F, Erne P. Leisure‐time activities of patients with ICDs: findings of a survey with respect to sports activity, high altitude stays, and driving paterns. Pacing Clin Electrophysiol. 2008;31:845–849. doi: 10.1111/j.1540-8159.2008.01098.x
    1. Dehnert C, Bärtsch P. Can patients with coronary heart disease go to high altitude? High Alt Med Biol. 2010;11:183–188. doi: 10.1089/ham.2010.1024
    1. Agostoni P. Considerations on safety and treatment of patients with chronic heart failure at high atltitude. High Alt Med Biol. 2013;14:96–100. doi: 10.1089/ham.2012.1117
    1. Ponikowski P, Kirwan B‐A, Anker SD, McDonagh T, Dorobantu M, Drozdz J, Fabien V, Filippatos G, Göhring UM, Keren A, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double‐blind, randomised, controlled trial. Lancet. 2020;396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4
    1. Okazaki K, Stray‐Gundersen J, Chapman RF, Levine BD. Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. J Appl Physiol (1985). 2019;127:1569–1578. doi: 10.1152/japplphysiol.00115.2018
    1. Agostoni P, Cattadori G, Guazzi M, Bussotti M, Conca C, Lomanto M, Marenzi G, Guazzi M. Effects of simulated altitude‐induced hypoxia on exercise capacity in patients with chronic heart failure. Am J Med. 2000;109:450–455. doi: 10.1016/S0002-9343(00)00532-5
    1. Schmid JP, Nobel D, Brugger N, Novak J, Palau P, Trepp A, Wilhelm M, Saner H. Short‐term high altitude exposure at 3454 m is well tolerated in patients with stable heart failure. Eur J Heart Fail. 2015;17:182–186. doi: 10.1002/ejhf.227
    1. Vona M, Mazzuero G, Lupi A, Vettorato C, Bosso P, Cohen‐Solal A. Effects of altitude on effort tolerance in non‐acclimatized patients with ischemic left ventricular dysfunction. Eur J Cardiovasc Prev Rehabil. 2006;13:617–624. doi: 10.1097/01.hjr.0000220583.27140.9b
    1. Valentini M, Revera M, Bilo G, Caldara G, Savia G, Styczkiewicz K, Parati S, Gregorini F, Faini A, Branzi G, et al. Effects of beta‐blockade on exercise performance at high altitude: a randomized, placebo‐controlled trial comparing the efficacy of nebivolol versus carvedilol in healthy subjects. Cardiovasc Ther. 2012;30:240–248. doi: 10.1111/j.1755-5922.2011.00261.x
    1. Javaheri S. Acetazolamide improves central sleep apnea in heart failure: a double‐blind, prospective study. Am J Respir Crit Care Med. 2006;173:234–237. doi: 10.1164/rccm.200507-1035OC
    1. Donegani E, Hillebrandt D, Windsor J, Gieseler U, Rodway G, Schoffl V, Kupper T. Pre‐existing cardiovascular conditions and high altitude travel. Consensus statement of the Medical Commission of the Union Internationale des Associations d'Alpinisme (UIAA MedCom) Travel Medicine and Infectious Disease. Travel Med Infect Dis. 2014;12:237–252. doi: 10.1016/j.tmaid.2014.02.004
    1. Luks AM, Swenson ER. Travel to high altitude with pre‐existing lung disease. Eur Respir J. 2007;29:770–792. doi: 10.1183/09031936.00052606
    1. Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H, Seeger W, Grimminger F. Sildenafil increased exercise capacity during hypoxia at low altitudes and at mount everest base camp. A randomized, double‐blind, placebo‐controlled crossover trial. Ann Intern Med. 2004;141:169–177. doi: 10.7326/0003-4819-141-3-200408030-00005
    1. Groth A, Saxer S, Bader PR, Lichtblau M, Furian M, Schneider SR, Schwarz EI, Bloch KE, Ulrich S. Acute hemodynamic changes by breathing hypoxic and hyperoxic gas mixtures in pulmonary arterial and chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2018;270:262–267. doi: 10.1016/j.ijcard.2018.05.127
    1. Garcia JA, McMinn SB, Zuckerman JH, Fixler DE, Levine BD. The role of the right ventricle during hypobaric hypoxic exercise: insights from patietns after the Fontan operation. Med Sci Sports Exerc. 1993;31:269–276. doi: 10.1097/00005768-199902000-00011
    1. Seys SF, Daenen M, Dilissen E, Van Thienen R, Bullens DM, Hespel P, Dupont LJ. Effects of high altitude and cold air exposure on airway inflammation in patients with asthma. Thorax. 2013;68:906–913. doi: 10.1136/thoraxjnl-2013-203280
    1. Sheel AW, MacNutt MJ, Querido JS. The pulmonary system during exercise in hypoxia and the cold. Exp Physiol. 2010;95:422–430. doi: 10.1113/expphysiol.2009.047571
    1. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:136–143. doi: 10.1513/pats.200709-155MG
    1. Nussbaumer‐Ochsner Y, Ursprung J, Siebenmann C, Maggiorini M, Bloch KE. Effect of short‐term acclimatization to high altitude on sleep and nocturnal breathing. Sleep. 2012;35:419–423. doi: 10.5665/sleep.1708
    1. Nussbaumer‐Ochsner Y, Schuepfer N, Ulrich S, Bloch KE. Exacerbation of sleep apnoea by frequent central events in patients with the obstructive sleep apnoea syndrome at altitude: a randomized trial. Thorax. 2010;65:429–435. doi: 10.1136/thx.2009.125849
    1. Latshang TD, Nussbaumer‐Ochsner Y, Henn RM, Ulrich S, Lo Cascio CM, Ledergerber B, Kohler M, Bloch KE. Effect of acetazolamide and AutoCPAP therapy on breathing disturbances among patients with obstructive sleep apnea syndrome who travel to altitude. J Am Med Assoc. 2012;308:2390–2398. doi: 10.1001/jama.2012.94847
    1. Bloch KE, Latshang TD, Ulrich S. Patients with obstructive sleep apnea at altitude. High Alt Med Biol. 2015;16:110–116. doi: 10.1089/ham.2015.0016

Source: PubMed

3
Iratkozz fel