Longitudinal study of the scalp microbiome suggests coconut oil to enrich healthy scalp commensals

Rituja Saxena, Parul Mittal, Cecile Clavaud, Darshan B Dhakan, Nita Roy, Lionel Breton, Namita Misra, Vineet K Sharma, Rituja Saxena, Parul Mittal, Cecile Clavaud, Darshan B Dhakan, Nita Roy, Lionel Breton, Namita Misra, Vineet K Sharma

Abstract

Dandruff is a recurrent chronic scalp disorder, affecting majority of the population worldwide. Recently a metagenomic study of the Indian scalp microbiome described an imperative role of bacterial commensals in providing essential vitamins and amino acids to the scalp. Coconut oil and its formulations are commonly applied on the scalp in several parts of the world to maintain scalp health. Thus, in this study we examined the effect of topical application of coconut oil on the scalp microbiome (bacterial and fungal) at the taxonomic and functional levels and their correlation with scalp physiological parameters. A 16-weeks-long time-course study was performed including 12-weeks of treatment and 4-weeks of relapse phase on a cohort of 140 (70 healthy and 70 dandruff) Indian women, resulting in ~ 900 metagenomic samples. After the treatment phase, an increase in the abundance of Cutibacterium acnes and Malassezia globosa in dandruff scalp was observed, which were negatively correlated to dandruff parameters. At the functional level, an enrichment of healthy scalp-related bacterial pathways, such as biotin metabolism and decrease in the fungal pathogenesis pathways was observed. The study provides novel insights on the effect of coconut oil in maintaining a healthy scalp and in modulating the scalp microbiome.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Study Design. Swab samples were collected at three phases, baseline (t = 1), treatment phase (t = 2) and relapse phase (t = 3) from healthy and dandruff scalps. Bacterial and fungal DNA was extracted from the collected swab samples, and amplicon (bacterial 16S rRNA V3 and fungal ITS1 region) and shotgun metagenomic sequencing were performed to carry out the taxonomic and functional analysis. In the figure, H = healthy scalp, D = dandruff scalp, O = oil-treatment, S = shampoo-treatment, and B, T and R = the three phases or time-points i.e. Baseline, Treatment and Relapse phase, and n = number of subjects in each group.
Figure 2
Figure 2
Comparison of fungal population at the three phases. (a) Bubble plots representing the top five fungal species across all the groups. The bubble size indicates mean relative abundance of species within each group. Square brackets indicate the groups between which a significant difference in the species abundance was observed (p ≤ 0.05, Wilcoxon test, + indicates the group with the higher abundance among the two). (b) Core fungal species showing significant variations across the three phases (FDR adjusted p ≤ 0.05, repeated measures ANOVA).
Figure 3
Figure 3
Comparison of bacterial population at the three phases. (a) Bubble plots representing the top five bacterial species across all the groups. The bubble size indicates mean relative abundance of species within each group. Square brackets indicate the groups between which a significant difference in the species abundance was observed (p ≤ 0.05, Wilcoxon test, + indicates the group with the higher abundance among the two). (b) Significant fold-change differences (p ≤ 0.05) observed in bacterial species abundance between oil-treatment and shampoo-application. No significant difference was observed in the fungal species between the two treatment groups. (c) Core bacterial species showing significant variations across the three phases (FDR adjusted p ≤ 0.05, repeated measures ANOVA).
Figure 4
Figure 4
Spearman’s correlation between microbial taxa and host physiological parameters. (a) Fungal and (b) bacterial taxa showing significant correlations (+ , FDR adjusted p ≤ 0.05) with any of the parameters are plotted as a heatmap.
Figure 5
Figure 5
Functional analysis of fungal microbiome. The proportions of fungal pathways showing significant variations across all the three phases in the following groups (FDR adjusted p ≤ 0.05, repeated measures ANOVA) are shown in the box plots: (a) Healthy oil-treated group, (b) dandruff oil-treated group, (c) healthy shampoo-treated group and (d) dandruff shampoo-treated group.
Figure 6
Figure 6
Functional analysis of bacterial microbiome. Differentially abundant bacterial KEGG pathways after (a) oil-treatment and (b) shampoo application in the dandruff group (which showed p ≤ 0.05, Wilcoxon test) are shown in the bar graphs. None of the pathways showed significant differences in the healthy group.
Figure 7
Figure 7
Schematic representation of biotin metabolism pathway describing the significantly enriched KOs (p ≤ 0.05) in the dataset.

References

    1. Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA, Program NCS. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. doi: 10.1038/nature13786.
    1. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–253. doi: 10.1038/nrmicro2537.
    1. Saxena R, Sharma VK. A metagenomic insight into the human microbiome: its implications in health and disease. In: Kumar D, Antonarakis S, editors. Medical and Health Genomics. Mica Haley; 2016. pp. 107–119.
    1. Saxena R, Mittal P, Clavaud C, Dhakan DB, Hegde P, Veeranagaiah MM, Saha S, Souverain L, Roy N, Breton L. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front. Cell. Infect. Microbiol. 2018;8:346. doi: 10.3389/fcimb.2018.00346.
    1. Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, El Rawadi C, Guillot J, Menard-Szczebara F, Breton L, Latge JP, Mouyna I. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS ONE. 2013;8(3):e58203. doi: 10.1371/journal.pone.0058203.
    1. Wang L, Clavaud C, Bar-Hen A, Cui M, Gao J, Liu Y, Liu C, Shibagaki N, Gueniche A, Jourdain R, Lan K, Zhang C, Altmeyer R, Breton L. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp. Dermatol. 2015;24(5):398–400. doi: 10.1111/exd.12684.
    1. Soares RC, Camargo-Penna PH, de Moraes VCS, De Vecchi R, Clavaud C, Breton L, Braz ASK, Paulino LC. Dysbiotic bacterial and fungal communities not restricted to clinically affected skin sites in dandruff. Front. Cell. Infect. Microbiol. 2016;6:157. doi: 10.3389/fcimb.2016.00157.
    1. Xu Z, Wang Z, Yuan C, Liu X, Yang F, Wang T, Wang J, Manabe K, Qin O, Wang X, Zhang Y, Zhang M. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci. Rep. 2016;6:24877. doi: 10.1038/srep24877.
    1. Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS ONE. 2012;7(2):e32847. doi: 10.1371/journal.pone.0032847.
    1. Borda LJ, Wikramanayake TC. Seborrheic dermatitis and dandruff: a comprehensive review. J. Clin. Investig. Dermatol. 2015;3:2.
    1. Hay R. Malassezia, dandruff and seborrhoeic dermatitis: an overview. Br. J. Dermatol. 2011;165:2–8. doi: 10.1111/j.1365-2133.2011.10570.x.
    1. Perez GIP, Gao Z, Jourdain R, Ramirez J, Gany F, Clavaud C, Demaude J, Breton L, Blaser MJ. Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS ONE. 2016;11(4):e0151990. doi: 10.1371/journal.pone.0151990.
    1. Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, Kurokawa R, Yamashita N, Hattori Y, Shindo C. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 2017;7(1):10567. doi: 10.1038/s41598-017-10834-9.
    1. Tanaka A, Cho O, Saito C, Saito M, Tsuboi R, Sugita T. Comprehensive pyrosequencing analysis of the bacterial microbiota of the skin of patients with seborrheic dermatitis. Microbiol. Immunol. 2016;60(8):521–526. doi: 10.1111/1348-0421.12398.
    1. Park T, Kim HJ, Myeong NR, Lee HG, Kwack I, Lee J, Kim BJ, Sul WJ, An S. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp. Dermatol. 2017;26(9):835–838. doi: 10.1111/exd.13293.
    1. Soares RC, Zani MB, Arruda ACBB, de Arruda LHF, Paulino LC. Malassezia intra-specific diversity and potentially new species in the skin microbiota from Brazilian healthy subjects and seborrheic dermatitis patients. PLoS ONE. 2015;10(2):e0117921. doi: 10.1371/journal.pone.0117921.
    1. Hiruma M, Cho O, Hiruma M, Kurakado S, Sugita T, Ikeda S. Genotype analyses of human commensal scalp fungi, Malassezia globosa, and Malassezia restricta on the scalps of patients with dandruff and healthy subjects. Mycopathologia. 2014;177(5–6):263–269. doi: 10.1007/s11046-014-9748-2.
    1. Jourdain R, Moga A, Vingler P, El Rawadi C, Pouradier F, Souverain L, Bastien P, Amalric N, Breton L. Exploration of scalp surface lipids reveals squalene peroxide as a potential actor in dandruff condition. Arch. Dermatol. Res. 2016;308(3):153–163. doi: 10.1007/s00403-016-1623-1.
    1. Donnarumma G, Perfetto B, Paoletti I, Oliviero G, Clavaud C, Del Bufalo A, Guéniche A, Jourdain R, Tufano MA, Breton L. Analysis of the response of human keratinocytes to Malassezia globosa and restricta strains. Arch. Dermatol. Res. 2014;306(8):763–768. doi: 10.1007/s00403-014-1479-1.
    1. Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B, Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6(1):20. doi: 10.1186/s40168-018-0404-9.
    1. Gallo RL, Nakatsuji T. Microbial symbiosis with the innate immune defense system of the skin. J. Invest. Dermatol. 2011;131(10):1974–1980. doi: 10.1038/jid.2011.182.
    1. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat. Rev. Microbiol. 2018;16(3):143–155. doi: 10.1038/nrmicro.2017.157.
    1. Pierard-Franchimont C, Pierard G, Arrese J, De Doncker P. Effect of ketoconazole 1% and 2% shampoos on severe dandruff and seborrhoeic dermatitis: clinical, squamometric and mycological assessments. Dermatology. 2001;202(2):171–176. doi: 10.1159/000051628.
    1. Pierard G, Arrese J, Piérard-Franchimont C, De Doncker P. Prolonged effects of antidandruff shampoos-time to recurrence of Malassezia ovalis colonization of skin. Int. J. Cosmet. Sci. 1997;19(3):111–117. doi: 10.1111/j.1467-2494.1997.tb00174.x.
    1. Kamamoto C, Nishikaku A, Gompertz O, Melo A, Hassun K, Bagatin E. Cutaneous fungal microbiome: Malassezia yeasts in seborrheic dermatitis scalp in a randomized, comparative and therapeutic trial. Dermato-endocrinology. 2017;9(1):e1361573. doi: 10.1080/19381980.2017.1361573.
    1. Zani M, Soares R, Arruda A, de Arruda L, Paulino L. Ketoconazole does not decrease fungal amount in patients with Seborrhoeic dermatitis. Br. J. Dermatol. 2016;175(2):417–421. doi: 10.1111/bjd.14501.
    1. Ortonne JP, Nikkels A, Reich K, Ponce Olivera R, Lee J, Kerrouche N, Sidou F, Faergemann J. Efficacious and safe management of moderate to severe scalp seborrhoeic dermatitis using clobetasol propionate shampoo 0–05% combined with ketoconazole shampoo 2%: a randomized, controlled study. Br. J. Dermatol. 2011;165(1):171–176. doi: 10.1111/j.1365-2133.2011.10269.x.
    1. Chiu C-H, Huang S-H, Wang H-MD. A review: hair health, concerns of shampoo ingredients and scalp nourishing treatments. Curr. Pharmaceut. Biotechnol. 2015;16(12):1045–1052. doi: 10.2174/1389201016666150817094447.
    1. Gavazzoni Dias MF. Hair cosmetics: an overview. Int. J. Trichol. 2015;7(1):2–15. doi: 10.4103/0974-7753.153450.
    1. Dorni, C., Sharma, P., Saikia, G., & Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chemistry (2017).
    1. Young F. Palm kernel and coconut oils: analytical characteristics, process technology and uses. J. Am. Oil Chem. Soc. 1983;60(2):374–379. doi: 10.1007/BF02543521.
    1. Garg A, Miiller J. Inhibition of growth of dermatophytes by Indian hair oils. Mycoses. 1992;35(11–12):363–369.
    1. Hajini G, Kandhari K, Mohapatra L, Bhutani L. Effect of hair oils and fatty acids on the growth of dermatophytes and their in vitro penetration of human scalp hair. Sabouraudia J. Med. Vet. Mycol. 1970;8(3):174–176. doi: 10.1080/00362177085190851.
    1. Ohk SO, Park HG, Lee H, Kwon YJ, Kim BJ, Kim D, Chun YJ. Heterologous expression and characterization of CYP61A1 from dandruff-causing Malassezia globosa. Protein Exp. Purif. 2015;114:89–94. doi: 10.1016/j.pep.2015.07.002.
    1. Boemeke L, Marcadenti A, Busnello FM, Gottschall CBA. Effects of coconut oil on human health. Open J. Endocrine Metabolic Dis. 2015;5(07):84. doi: 10.4236/ojemd.2015.57011.
    1. Evangelista MT, Abad-Casintahan F, Lopez-Villafuerte L. The effect of topical virgin coconut oil on SCORAD index, transepidermal water loss, and skin capacitance in mild to moderate pediatric atopic dermatitis: a randomized, double-blind, clinical trial. Int. J. Dermatol. 2014;53(1):100–108. doi: 10.1111/ijd.12339.
    1. Lee HJ, Jeong SE, Lee S, Kim S, Han H, Jeon CO. Effects of cosmetics on the skin microbiome of facial cheeks with different hydration levels. MicrobiologyOpen. 2018;7(2):e00557. doi: 10.1002/mbo3.557.
    1. Lynde CW, Andriessen A, Bertucci V, McCuaig C, Skotnicki S, Weinstein M, Wiseman M, Zip C. The skin microbiome in atopic dermatitis and its relationship to emollients. J. Cutan. Med. Surg. 2016;20(1):21–28. doi: 10.1177/1203475415605498.
    1. Gonzalez ME, Schaffer JV, Orlow SJ, Gao Z, Li H, Alekseyenko AV, Blaser MJ. Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J. Am. Acad. Dermatol. 2016;75(3):481–493. doi: 10.1016/j.jaad.2016.04.066.
    1. Seité S, Zelenkova H, Martin R. Clinical efficacy of emollients in atopic dermatitis patients–relationship with the skin microbiota modification. Clin. Cosmet. Investig. Dermatol. 2017;10:25. doi: 10.2147/CCID.S121910.
    1. Pouradier F, Liu C, Wares J, Yokoyama E, Collaudin C, Panhard S, Saint-Léger D, Loussouarn G. The worldwide diversity of scalp seborrhoea, as daily experienced by seven human ethnic groups. Int. J. Cosmet. Sci. 2017;39:629–636. doi: 10.1111/ics.12425.
    1. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol. Mol. Biol. Rev. 2007;71(2):282–294. doi: 10.1128/MMBR.00037-06.
    1. Gemmer CM, DeAngelis YM, Theelen B, Boekhout T, Dawson TL., Jr Fast, noninvasive method for molecular detection and differentiation of Malassezia yeast species on human skin and application of the method to dandruff microbiology. J. Clin. Microbiol. 2002;40(9):3350–3357. doi: 10.1128/JCM.40.9.3350-3357.2002.
    1. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24(2):160–168. doi: 10.1016/j.copbio.2012.08.005.
    1. Grafe F, Wohlrab W, Neubert RH, Brandsch M. Transport of biotin in human keratinocytes. J. Invest. Dermatol. 2003;120(3):428–433. doi: 10.1046/j.1523-1747.2003.12058.x.
    1. Uchida Y, Ito K, Ohtsuki S, Kubo Y, Suzuki T, Terasaki T. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J. Neurochem. 2015;134(1):97–112. doi: 10.1111/jnc.13092.
    1. De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs the open chamber Tewameter. Skin Res. Technol. 2005;11(1):61–69. doi: 10.1111/j.1600-0846.2005.00101.x.
    1. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–2963. doi: 10.1093/bioinformatics/btr507.
    1. Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7(2):e30619. doi: 10.1371/journal.pone.0030619.
    1. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17(1):10–12. doi: 10.14806/ej.17.1.200.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72(7):5069–5072. doi: 10.1128/AEM.03006-05.
    1. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H. Package ‘vegan’. Commun. Ecol. Pack. Vers. 2013;2:9.
    1. Leung MH, Chan KC, Lee PK. Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome. 2016;4(1):46. doi: 10.1186/s40168-016-0192-z.
    1. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjoller R, Koljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H. Fungal community analysis by high-throughput sequencing of amplified markers—a user's guide. New Phytol. 2013;199(1):288–299. doi: 10.1111/nph.12243.
    1. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12(4):656–664. doi: 10.1101/gr.229202.
    1. Yi H, Schumann P, Chun J. Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 as Actinotalea fermentans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2007;57(1):151–156. doi: 10.1099/ijs.0.64525-0.
    1. Liu X, Kaas RS, Jensen PR, Workman M. Draft genome sequence of the yeast Pachysolen tannophilus CBS 4044/NRRL Y-2460. Eukaryot Cell. 2012;11(6):827–827. doi: 10.1128/EC.00114-12.
    1. Rotmistrovsky, K., & Agarwala, R. BMTagger: Best Match Tagger for removing human reads from metagenomics datasets (2011).
    1. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M. The UCSC genome browser database: 2015 update. Nucleic Acids Res. 2014;43(D1):D670–D681. doi: 10.1093/nar/gku1177.
    1. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res. 2013;42(D1):D705–D710. doi: 10.1093/nar/gkt1029.
    1. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, Kissinger JC, Li W, Nayak V, Pinney DF. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 2011;40(D1):D675–D681. doi: 10.1093/nar/gkr918.
    1. Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 2016;44(D1):D574–D580. doi: 10.1093/nar/gkv1209.
    1. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 2011;40(D1):D700–D705. doi: 10.1093/nar/gkr1029.
    1. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 2017;45(D1):D592–D596. doi: 10.1093/nar/gkw924.
    1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352.
    1. Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2013;30(1):31–37. doi: 10.1093/bioinformatics/btt310.
    1. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18. doi: 10.1186/2047-217X-1-18.
    1. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38(12):e132–e132. doi: 10.1093/nar/gkq275.
    1. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:465–467. doi: 10.1093/nar/gki458.
    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi: 10.1038/nature11450.
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923.
    1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2.
    1. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27.
    1. Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics. 2011;28(1):125–126. doi: 10.1093/bioinformatics/btr595.
    1. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:199–205. doi: 10.1093/nar/gkt1076.
    1. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T, Rattei T, Creevey C, Kuhn M, Jensen LJ, von Mering C, Bork P. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014;42:231–239. doi: 10.1093/nar/gkt1253.
    1. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12(1):59–60. doi: 10.1038/nmeth.3176.
    1. Team, R. C. R: A language and environment for statistical computing (2013).
    1. Wickham H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011;3(2):180–185. doi: 10.1002/wics.147.

Source: PubMed

3
Iratkozz fel