Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis

Yewei Xie, Zaisheng Wang, Huipeng Liao, Gifty Marley, Dan Wu, Weiming Tang, Yewei Xie, Zaisheng Wang, Huipeng Liao, Gifty Marley, Dan Wu, Weiming Tang

Abstract

Background: The COVID-19 pandemic has affected the world deeply, with more than 14,000,000 people infected and nearly 600,000 deaths. This review aimed to summarize the epidemiologic traits, clinical spectrum, CT results and laboratory findings of the COVID-19 pandemic.

Methods: We scoped for relevant literatures published during 1st December 2019 to 16th July 2020 based on three databases using English and Chinese languages. We reviewed and analyzed the relevant outcomes.

Results: The COVID-19 pandemic was found to have a higher transmission rate compared to SARS and MERS and involved 4 stages of evolution. The basic reproduction number (R0) is 3.32 (95% CI:3.24-3.39), the incubation period was 5.24 days (95% CI:3.97-6.50, 5 studies) on average, and the average time for symptoms onset varied by countries. Common clinical spectrums identified included fever (38.1-39.0 °C), cough and fatigue, with Acute Respiratory Distress Syndrome (ARDS) being the most common complication reported. Body temperatures above 39.0 °C, dyspnea, and anorexia were more common symptoms in severe patients. Aged over 65 years old, having co-morbidities, and developing complications were the commonest high-risk factors associated with severe conditions. Leucopenia and lymphopenia were the most common signs of infection while liver and kidney damage were rare but may cause bad outcomes for patients. The bilateral, multifocal Ground-Glass Opacification (GGO) on peripheral, and the consolidative pulmonary opacity were the most frequent CT results and the tendency of mortality rates differed by region.

Conclusions: We provided a bird's-eye view of the COVID-19 during the current pandemic, which will help better understanding the key traits of the disease. The findings could be used for disease's future research, control and prevention.

Keywords: COVID-19; Clinical spectrum; Epidemiology; Laboratory findings; Nature history.

Conflict of interest statement

Dr.Weiming Tang is the Associate Editor of this journal.

Figures

Fig. 1
Fig. 1
PRISM flow diagram
Fig. 2
Fig. 2
Case fatality rate of countries reported over 20,000 cases, 2020*. *Data was collected until 14 July 2020 (i.e. the 196th day of year 2020). The CFR of a country was not included on those dates when the country reported less than 100 cases, with the consideration that the CFR may not be reliable if the size of infected population was small
Fig. 3
Fig. 3
Comparison of top 3 symptoms among mild and severe patients with COVID-19, 2020*. *The X-axis means the number of symptoms reported by how many studies. The Y-axis means symptoms’ ranking in mild and severe patients. In this circumstance, rank means the order judged by the frequency of the symptoms reported among studies

References

    1. WHO. Situation report – 182. . Accessed 21 July 2020.
    1. WHO. Rolling updates on coronavirus disease (COVID-19) . Accessed 15 July 2020.
    1. RStudio . RStudio: integrated development for R. Boston, MA: RStudio, PBC; 2020.
    1. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane, 2019. . Accessed 25 May 2020.
    1. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). . Accessed 25 May 2020.
    1. CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) —United States, February 12–March 16, 2020. . Accessed 25 May 2020.
    1. Epidemiology Working Group for NCIP Epidemic Response The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol. 2020;41(2):145–151.
    1. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020;382(24):2302–2315.
    1. Jeong EK, Park O, Park YJ, Park SY, Kim YM, Kim J, et al. Coronavirus disease-19: The first 7,755 cases in the Republic of Korea. Osong Public Health Res Perspect. 2020;11(2):85–90.
    1. COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention Coronavirus Disease-19: Summary of 2,370 Contact Investigations of the First 30 Cases in the Republic of Korea. Osong Public Health Res Perspect. 2020;11(2):81–84.
    1. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19). Chin J Epidemiol. 2020;41(2):139–44.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
    1. J-j Z, Dong X, Cao Y-Y, Yuan Y-D, Yang Y-B, Yan Y-Q, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy vol. 2020;75(7):1730–1741.
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382(13):1199–1207.
    1. Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606.
    1. W-j G, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.
    1. National Health Commission of the PRC. Novel coronavirus pneumonia prevention and control program (Sixth Edition). . Accessed 25 May 2020.
    1. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5(4):335–337.
    1. Vivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11(1):3572.
    1. (RIVM) RvVeM . COVID-19: Nieuwe aanwijzing voor inwoners Noord-Brabant. [COVID-19: Advice for residents of Noord-Brabant] Bilthoven: RIVM; 2020.
    1. Reusken CB, Buiting A, Bleeker-Rovers C, Diederen B, Hooiveld M, Friesema I, et al. Rapid assessment of regional SARS-CoV-2 community transmission through a convenience sample of healthcare workers, the Netherlands, march 2020. Euro Surveill. 2020;25(12):2000334.
    1. CBC News. Community transmission of COVID-19 detected in Winnipeg, public health officials say. . Accessed 25 May 2020.
    1. Localnews8. Community transmission of COVID-19 identified in Teton County, more cases in Custer and Bonneville. . Accessed 25 May 2020.
    1. Chowell G, Abdirizak F, Lee S, Lee J, Jung E, Nishiura H, et al. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med. 2020;13(1):1–12.
    1. NBC News. Medical workers in Spain and Italy 'overloaded' as more of them catch coronavirus. . Accessed 25 May 2020.
    1. AJazeera News. Thousands of medical staff infected with coronavirus in Italy. . Accessed 25 May 2020.
    1. Nacoti M, Ciocca A, Giupponi A, Brambillasca P, Lussana F, Pisano M, et al. At the epicenter of the Covid-19 pandemic and humanitarian crises in Italy: changing perspectives on preparation and mitigation. NEJM Catalyst Innovations in Care Delivery. 2020;1(2).
    1. Spina S, Marrazzo F, Migliari M, Stucchi R, Sforza A, Fumagalli R. The response of Milan's Emergency Medical System to the COVID-19 outbreak in Italy. Lancet. 2020;395(10227):e49–50.
    1. NY Times. Nurses Die, Doctors Fall Sick and Panic Rises on Virus Front Lines . Accessed 25 May 2020.
    1. Weekly TA. Poor working conditions hamper Egypt’s medical professionals’ effort to stop spread of virus. . Accessed 25 May 2020.
    1. European Centre for Disease Prevention and Control. Infection prevention and control in the household management of people with suspected or confirmed coronavirus disease (COVID-19). . Accessed 25 May 2020.
    1. Xu X-K, Liu X-F, Wang L, Ali ST, Du Z, Bosetti P, et al. Household transmissions of SARS-CoV-2 in the time of unprecedented travel lockdown in China. Preprint at . Accessed 31 Mar 2020.
    1. Nishiura H, Oshitani H, Kobayashi T, Saito T, Sunagawa T, Matsui T, et al. Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). Preprint at . Accessed 20 Mar 2020.
    1. LSE. COVID-19: Time to reduce the prison population in England and Wales. . Accessed 25 May 2020.
    1. News. C. Prisoners, Police and the Pandemic: Heinz College criminologist and public policy expert Daniel Nagin discusses disease transmission within the prison system. . Accessed 25 May 2020.
    1. ABC News. COVID-19, Cruise ship "nightmare". . Accessed 25 May 2020.
    1. Pan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(4):410–1.
    1. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406–1407.
    1. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR test results in patients recovered from COVID-19. JAMA. 2020;323(15):1502–1503.
    1. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553–558.
    1. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung S-M, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med. 2020;9(2):538.
    1. Backer JA, Klinkenberg D, Wallinga JJE. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro surveill. 2020;25(5):2000062.
    1. Song Q, Zhao H, Fang L, Liu W, Zheng C, Zhang Y. Study on assessing early epidemiological parameters of coronavirus disease epidemic in China. Chin J Epidemiol. 2020;41(4):461–465.
    1. Wang P, Lu J, Jin Y, Zhu M, Wang L, Chen SJ. Epidemiological characteristics of 1212 COVID-19 patients in Henan, China. Preprint at . Accessed 20 Mar 2020.
    1. Li J, Wang Y, Gilmour S, Wang M, Yoneoka D, Wang Y, et al. Estimation of the epidemic properties of the 2019 Novel coronavirus: a mathematical modeling study. Preprint at . Accessed 20 Mar 2020.
    1. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–697.
    1. Shen M, Peng Z, Xiao Y, Zhang L. Modeling the epidemic trend of the 2019 novel coronavirus outbreak in China. Preprint at . Accessed 20 Mar 2020.
    1. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214–7.
    1. Read JM, Bridgen JR, Cummings DA, Ho A, Jewell CPJM. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. Preprint at . Accessed 20 Mar 2020.
    1. Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int J Infect Dis. 2020;93:201–4.
    1. Liu T, Hu J, Xiao J, He G, Kang M, Rong Z, et al. Time-varying transmission dynamics of novel coronavirus pneumonia in China. Preprint at . Accessed 20 Mar 2020.
    1. Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J Clin Med. 2020;9(2):462.
    1. Liu T, Hu J, Kang M, Lin L, Zhong H, Xiao J, et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). Preprint at . Accessed 20 Mar 2020.
    1. Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani APJE. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology. 2005;16(6):791–801.
    1. Bauch CT, Oraby TJTL. Assessing the pandemic potential of MERS-CoV. Lancet. 2013;382(9893):662–664.
    1. COVID-19 Surveillance Group. Characteristics of COVID-19 patients dying in Italy: Report based on available data on March 26th, 2020. . Accessed 25 May 2020.
    1. European Centre for Disease Prevention and Control. Download today’s data on geographic distribution of COVID-19 cases worldwide. . Accessed on 22 April 2020.
    1. Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020;369:m1996.
    1. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966.
    1. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–1581.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
    1. Pareek M, Bangash MN, Pareek N, Pan D, Sze S, Minhas JS, et al. Ethnicity and COVID-19: an urgent public health research priority. Lancet. 2020;395(10234):1421–1422.
    1. 5050 GH. COVID-19 sex-disaggregated data tracker-Sex, gender and COVID-19. . Accessed 25 May 2020.
    1. Hong KS, Lee KH, Chung JH, Shin K-C, Choi EY, Jin HJ, et al. Clinical features and outcomes of 98 patients hospitalized with SARS-CoV-2 infection in Daegu, South Korea: a brief descriptive study. Yonsei Med J. 2020;61(5):431–437.
    1. Qasim M, Yasir M, Ahmad W, Yoshida M, Azhar M, Ali MA, et al. Early epidemiological and clinical manifestations of COVID-19 in Japan. Preprint at . Accessed 5 July 2020.
    1. Shabrawishi M, Al-Gethamy MM, Naser AY, Ghazawi MA, Alsharif GF, Obaid EF, et al. Clinical, radiological and therapeutic characteristics of patients with COVID-19 in Saudi Arabia. Preprint at . Accessed 5 July 2020.
    1. Pongpirul WA, Wiboonchutikul S, Charoenpong L, Panitantum N, Vachiraphan A, Uttayamakul S, et al. Clinical course and potential predicting factors of pneumonia of adult patients with coronavirus disease 2019 (COVID-19): a retrospective observational analysis of 193 confirmed cases in Thailand. Preprint at . Accessed 5 July 2020.
    1. Almazeedi S, Al-Youha S, Jamal MH, Al-Haddad M, Al-Muhaini A, Al-Ghimlas F, et al. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. Preprint at . Accessed 5 July 2020.
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069.
    1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterization protocol: prospective observational cohort study. BMJ. 2020;369:m1985.
    1. Rojo JMC, Santos JMA, Núñez-Cortés JM, Bermejo CL, Rincón JMR, Roy-Vallejo E, et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: results from the SEMI-COVID-19 network. Preprint at . Accessed 5 July 2020.
    1. Regina J, Papadimitriou-Olivgeris M, Burger R, Filippidis P, Tschopp J, Desgranges F, et al. Epidemiology, risk factors and clinical course of SARS-CoV-2 infected patients in a Swiss university hospital: an observational retrospective study. Preprint at . Accessed 5 July 2020.
    1. Boddington NL, Charlett A, Elgohari S, Walker JL, Mcdonald H, Byers C, et al. COVID-19 in Great Britain: epidemiological and clinical characteristics of the first few hundred (FF100) cases: a descriptive case series and case control analysis. Preprint at . Accessed 5 July 2020.
    1. Colaneri M, Sacchi P, Zuccaro V, Biscarini S, Sachs M, Roda S, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro Surveill. 2020;25(16):2000460.
    1. Ortiz-Brizuela E, Villanueva-Reza M, González-Lara MF, Tamez-Torres KM, Román-Montes CM, Díaz-Mejía BA, et al. Clinical and epidemiological characteristics of patients diagnosed with COVID-19 in a tertiary care center in Mexico CITY: a prospective cohort study. Rev Investig Clin. 2020;72(3):165–177.
    1. Shekhar R, Sheikh AB, Upadhyay S, Atencio J, Kapuria DJID. Early experience with COVID-19 patients at academic hospital in southwestern United States. Infect Dis (Lond) 2020;52(8):596–599.
    1. Suleyman G, Fadel RA, Malette KM, Hammond C, Abdulla H, Entz A, et al. Clinical characteristics and morbidity associated with coronavirus disease 2019 in a series of patients in metropolitan Detroit. JAMA Netw Open. 2020;3(6):e2012270.
    1. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York city. N Engl J Med. 2020;382(24):2372–2374.
    1. de Souza WM, Buss LF, da Silva Candido D, Carrera JP, Li S, Zarebski A, et al. Epidemiological and clinical characteristics of the early phase of the COVID-19 epidemic in Brazil. Preprint at . Accessed 5 July 2020.
    1. Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, Rodríguez-Jorge F, Natera-Villalba E, Gómez-Corral J, et al. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case–control study. Preprint at . Accessed 5 July 2020.
    1. Bénézit F, Le Turnier P, Declerck C, Paillé C, Revest M, Dubée V, et al. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect Dis. 2020;S1473-3099(20):30297–30298.
    1. Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin Infect Dis. 2020;71(15):889–890.
    1. Kaye R, Chang CD, Kazahaya K, Brereton J, Denneny JCJOH, III, Surgery N. COVID-19 anosmia reporting tool: initial findings. Otolaryngol Head Neck Surg. 2020;163(1):132–134.
    1. Klopfenstein T, Toko L, Royer P-Y, Lepiller Q, Gendrin V, Zayet S. Features of anosmia in COVID-19. Med Mal Infect. 2020;50(5):436–439.
    1. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251–2261.
    1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):1–9.
    1. Moein ST, Hashemian SM, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020. 10.1002/alr.22587.
    1. Vaira LA, Salzano G, Deiana G, De Riu GJTL. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020;130(7):1787.
    1. Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020;10(7):806–813.
    1. Song J, Deng Y-K, Wang H, Wang Z-C, Liao B, Ma J, et al. Self-reported taste and smell disorders in patients with COVID-19: distinct features in China. Preprint at . Accessed 5 July 2020.
    1. Qiu C, Cui C, Hautefort C, Haehner A, Zhao J, Yao Q, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. Otolaryngol Head Neck Surg. 2020. 10.1177/0194599820934376.
    1. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535–544.
    1. Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature. 2020;584(7821):425–429.
    1. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481.
    1. Xiang T, Liu J, Xu F, Cheng N, Liu Y, Qian KJ, et al. Analysis of clinical characteristics of 49 patients with novel coronavirus pneumonia in Jiangxi province. Chin J Respir Crit Care Med. 2020;19(2):1–7.
    1. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488–1494.
    1. Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, et al. Clinical features and outcomes of 221 patients with COVID-19 in Wuhan, China Preprint at . Accessed 20 Mar 2020.
    1. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020;323(16):1612–1614.
    1. Mishra AK, Sahu KK, George AA, Lal AJH. Lung. A review of cardiac manifestations and predictors of outcome in patients with COVID–19. Heart Lung. 2020;S0147-9563(20):30157–30156.
    1. Liu CJZ, Shao C, Zhang H, Yue H, Chen Z, et al. Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study. Chin J Hepatol. 2020;282(2020):148.
    1. Li Z, Wu M, Guo J, Yao J, Liao X, Song S, et al. Caution on kidney dysfunctions of 2019-nCoV patients. Preprint at . Accessed 20 Mar 2020.
    1. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. Preprint at . Accessed 20 Mar 2020.
    1. Sahu KK, Lal A, Mishra AK. An update on CT chest findings in coronavirus disease-19 (COVID-19) Heart Lung. 2020;S0147-9563(20):30094–30097.
    1. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;296(2):E115–E117.
    1. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–E40.
    1. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):200463.
    1. Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):210–217.
    1. Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang D, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275–1280.
    1. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425–434.
    1. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295(3):715–721.
    1. Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306–3309.
    1. Khawaja AP, Warwick AN, Hysi PG, Kastner A, Dick A, Khaw PT, et al. Associations with covid-19 hospitalisation amongst 406,793 adults: the UK biobank prospective cohort study. Preprint at . Accessed 5 July 2020.
    1. Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity is associated with higher in-hospital mortality in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262.
    1. Shi Q, Zhao K, Yu J, Feng J, Zhao K, Zhang X, et al. Clinical characteristics of 101 non-surviving hospitalized patients with COVID-19: a single center, retrospective study. Preprint at . Accessed 20 Mar 2020.
    1. Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, et al. Clinical characteristics of 25 death cases infected with COVID-19 pneumonia: a retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020;94:128–132.
    1. Zhang B, Zhou X, Qiu Y, Feng F, Feng J, Jia Y, et al. Clinical characteristics of 82 death cases with COVID-19. PLoS One. 2020;15(7):e0235458.
    1. Lone SA, Ahmad A. COVID-19 pandemic – an African perspective. Emerg Microbes Infect. 2020;9(1):1300–1308.
    1. Gao M, Yang L, Chen X, Deng Y, Yang S, Xu H, et al. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020;169:106026.
    1. Gao Wenjing ZK, Ke JI, Liming L. Advances on the asymptomatic infection of COVID-19. Chin J Epidemiol. 2020;41(0):0.
    1. Zhong Wenlong HJ, Maoyu C, Liang J, Guowen P, Zhanli F, et al. A survey on a SARS nosocomial “super-spread” event (SSEs) in Jiangmen. Guangdong J Health Epidemic Prev. 2003;03:21–22.
    1. Ebrahim SH, Memish ZAJL. COVID-19: preparing for superspreader potential among Umrah pilgrims to Saudi Arabia. Lancet. 2020;395(10227):e48.
    1. Park Y-S, Lee C, Kim KM, Kim SW, Lee K-J, Ahn J, et al. The first case of the 2015 Korean Middle East respiratory syndrome outbreak. Epidemiol Health. 2015;37:e2015049.
    1. WHO. Update 30 - Status of diagnostic test, significance of “super spreaders”, situation in China. . Accessed 25 May 2020.
    1. CH. Problems to be solved in SARS research in China. Epidemiol Infect Dis. 2003;(06):369.
    1. Paper. T. COVID-19 "Fu Yang": there is no unified conclusion, and discharge management is being strengthened. . Accessed 20 May 2020.
    1. Paper T. Zhong Nanshan: at present, it seems that Fuyang patients are not infectious. . Accessed 25 May 2020.
    1. Euronnews. Coronavirus: What is Kawasaki disease and its possible link with COVID-19 in children? . Accessed 5 May 2020.

Source: PubMed

3
Iratkozz fel