New Claims for Wild Carrot (Daucus carota subsp. carota) Essential Oil

Jorge M Alves-Silva, Mónica Zuzarte, Maria José Gonçalves, Carlos Cavaleiro, Maria Teresa Cruz, Susana M Cardoso, Lígia Salgueiro, Jorge M Alves-Silva, Mónica Zuzarte, Maria José Gonçalves, Carlos Cavaleiro, Maria Teresa Cruz, Susana M Cardoso, Lígia Salgueiro

Abstract

The essential oil of Daucus carota subsp. carota from Portugal, with high amounts of geranyl acetate (29.0%), α-pinene (27.2%), and 11αH-himachal-4-en-1β-ol (9.2%), was assessed for its biological potential. The antimicrobial activity was evaluated against several Gram-positive and Gram-negative bacteria, yeasts, dermatophytes, and Aspergillus strains. The minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were evaluated showing a significant activity towards Gram-positive bacteria (MIC = 0.32-0.64 μL/mL), Cryptococcus neoformans (0.16 μL/mL), and dermatophytes (0.32-0.64 μL/mL). The inhibition of the germ tube formation and the effect of the oil on Candida albicans biofilms were also unveiled. The oil inhibited more than 50% of filamentation at concentrations as low as 0.04 μL/mL (MIC/128) and decreased both biofilm mass and cell viability. The antioxidant capacity of the oil, as assessed by two in chemico methods, was not relevant. Still, it seems to exhibit some anti-inflammatory potential by decreasing nitric oxide production around 20% in LPS-stimulated macrophages, without decreasing macrophages viability. Moreover, the oils safety profile was assessed on keratinocytes, alveolar epithelial cells, macrophages, and hepatocytes. Overall, the oil demonstrated a safety profile at concentrations below 0.64 μL/mL. The present work highlights the bioactive potential of D. carota subsp. carota suggesting its industrial exploitation.

Figures

Figure 1
Figure 1
Biofilm biomass after treatment with D. carota subsp. carota essential oil, using the crystal violet assay. Biofilm biomass was determined using the formula (Abs620 sample/Abs620 control) 100. Results are shown as mean ± standard deviation of at least three independent determinations carried out in duplicate. ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, compared to control using one-way ANOVA followed by Dunnett's multiple comparison test. Control (100%) corresponds to an absorbance mean value of 1.587.
Figure 2
Figure 2
Biofilm viability after treatment with D. carota subsp. carota essential oil using the XTT viability assay. Results are shown as mean ± standard deviation of at least three independent determinations carried out in duplicate. p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001, compared to control using one-way ANOVA followed by Dunnett's multiple comparison test. Control (100%) corresponds to an absorbance mean value of 0.621.
Figure 3
Figure 3
NO scavenging activity of Daucus carota subsp. carota essential oil. Different concentrations of essential oil (1.25–0.08 μL/mL) were incubated with the NO donor, SNAP (100 mM), in culture medium for 3 h. Results are shown as mean ± SEM of three independent assays, done in duplicate.
Figure 4
Figure 4
Anti-inflammatory effect of Daucus carota subsp. carota in LPS-stimulated Raw 264.7 macrophages: (a) NO production and (b) cell viability. Macrophages were treated with essential oil (1.25–0.08 μL/mL) for 1 h prior to LPS (1 μg/mL) activation and further incubated for 24 h. NO release was determined in the supernatants of the cultures using the Griess reagent (a) and cell viability was assessed on adherent cells using the resazurin reagent and expressed as percentage of cell viability by control cells (b). Results are shown as mean ± SEM of at least three independent assays. (p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.0001, compared to LPS). Cell viability control (100%) corresponds to an absorbance mean value of 0.435.

References

    1. Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—a review. Food and Chemical Toxicology. 2008;46(2):446–475. doi: 10.1016/j.fct.2007.09.106.
    1. Gonçalves M. J., Cruz M. T., Tavares A. C., et al. Composition and biological activity of the essential oil from Thapsia minor, a new source of geranyl acetate. Industrial Crops and Products. 2012;35(1):166–171. doi: 10.1016/j.indcrop.2011.06.030.
    1. Chalchat J. C., Chiron F., Garry R. P., Lacoste J., Sautou Y. Photochemical hydroperoxidation of terpenes. Antimicrobial activity of α-pinene, β-pinene and limonene hydroperoxides. Journal of Essential Oil Research. 2000;12(1):125–134. doi: 10.1080/10412905.2000.9712059.
    1. Soković M., Stojković D., Glamočlija J., Ćirić A., Ristić M., Grubišić D. Susceptibility of pathogenic bacteria and fungi to essential oils of wild Daucus carota . Pharmaceutical Biology. 2009;47(1):38–43. doi: 10.1080/13880200802400535.
    1. Guinoiseau E., Luciani A., Casanova J., Tomi F., Bolla J. M., Berti L. Daucus carota L.: a common plant with a potentially large medicinal application-field. In: Govil J. N., Singh V. K., editors. Drug Plants III. Vol. 29. Houston, Tex, USA: Studium Press LLC; 2010. pp. 385–411. (Recent Progress in Medicinal Plants).
    1. da Silva Dias J. C. Nutritional and health benefits of carrots and their seed extracts. Food and Nutrition Sciences. 2014;5(22):2147–2156. doi: 10.4236/fns.2014.522227.
    1. Tavares A. C., Gonçalves M. J., Cavaleiro C., et al. Essential oil of Daucus carota subsp. halophilus: composition, antifungal activity and cytotoxicity. Journal of Ethnopharmacology. 2008;119(1):129–134. doi: 10.1016/j.jep.2008.06.012.
    1. Chizzola R. Composition of the essential oil from Daucus carota ssp. carota growing wild in Vienna. Journal of Essential Oil-Bearing Plants. 2010;13(1):12–19. doi: 10.1080/0972060x.2010.10643785.
    1. Staniszewska M., Kula J., Wieczorkiewicz M., Kusewicz D. Essential oils of wild and cultivated carrots—the chemical composition and antimicrobial activity. Journal of Essential Oil Research. 2005;17(5):579–583. doi: 10.1080/10412905.2005.9699002.
    1. Valente J., Zuzarte M., Resende R., et al. Daucus carota subsp. gummifer essential oil as a natural source of antifungal and anti-inflammatory drugs. Industrial Crops and Products. 2015;65:361–366. doi: 10.1016/j.indcrop.2014.11.014.
    1. Jabrane A., Jannet H. B., Harzallah-Skhiri F., Mastouri M., Casanova J., Mighri Z. Flower and root oils of the Tunisian Daucus carota L. ssp. maritimus (Apiaceae): integrated analyses by GC, GC/MS, and 13C-NMR spectroscopy, and in vitro antibacterial activity. Chemistry and Biodiversity. 2009;6(6):881–889. doi: 10.1002/cbdv.200800144.
    1. Maxia A., Marongiu B., Piras A., et al. Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. Fitoterapia. 2009;80(1):57–61. doi: 10.1016/j.fitote.2008.09.008.
    1. Council of Europe. European Pharmacopoeia. 7th. Strasbourg, France: Directorate for the Quality of Medicines & HealthCare of the Council of Europe; 2010.
    1. Cavaleiro C., Salgueiro L. R., Miguel M. G., Proença da Cunha A. Analysis by gas chromatography-mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis . Journal of Chromatography A. 2004;1033(1):187–190. doi: 10.1016/j.chroma.2004.01.005.
    1. Adams R. P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. 4th. Carol Stream, Ill, USA: Allured; 2007.
    1. Joulain D., König W. A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. Hamburg, Germany: E.B.-Verlag; 1998. .
    1. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 9th. Wayne, Pa, USA: Clinical & Laboratory Standards Institute; 2012. (Standard M07-A9).
    1. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard M27-A3. 3rd. Wayne, Pa, USA: Clinical and Laboratory Standards Institute (CLSI); 2008.
    1. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard M38-A2. 2nd. Wayne, Pa, USA: Clinical and Laboratory Standards Institute (CLSI); 2008.
    1. Zuzarte M., Gonçalves M. J., Cruz M. T., et al. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chemistry. 2012;135(3):1505–1510. doi: 10.1016/j.foodchem.2012.05.090.
    1. Pinto E., Gonçalves M. J., Hrimpeng K., et al. Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products. 2013;51:93–99. doi: 10.1016/j.indcrop.2013.08.033.
    1. Taweechaisupapong S., Ngaonee P., Patsuk P., Pitiphat W., Khunkitti W. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. South African Journal of Botany. 2012;78:37–43. doi: 10.1016/j.sajb.2011.04.003.
    1. Raut J. S., Shinde R. B., Chauhan N. M., Karuppayil S. M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans . Biofouling. 2013;29(1):87–96. doi: 10.1080/08927014.2012.749398.
    1. Saharkhiz M. J., Motamedi M., Zomorodian K., Pakshir K., Miri R., Hemyari K. Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L. ISRN Pharmaceutics. 2012;2012:6. doi: 10.5402/2012/718645.718645
    1. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9-10):1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
    1. Garrett A. R., Murray B. K., Robison R. A., O'Neill K. L. Measuring antioxidant capacity using the ORAC and TOSC assays. Methods in Molecular Biology. 2010;594(12):251–262. doi: 10.1007/978-1-60761-411-1-17.
    1. Cao G., Prior R. L. Measurement of oxygen radical absorbance capacity in biological samples. Methods in Enzymology. 1998;299:50–62. doi: 10.1016/S0076-6879(99)99008-0.
    1. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry. 1982;126(1):131–138. doi: 10.1016/0003-2697(82)90118-X.
    1. Riss T. L., Moravec R. A., Niles A. L., et al. Assay Guidance Manual. National Center for Advancing Translational Sciences; 2004. Cell viability assays; p. p. 21.
    1. Inouye S., Takizawa T., Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. Journal of Antimicrobial Chemotherapy. 2001;47(5):565–573. doi: 10.1093/jac/47.5.565.
    1. Filipowicz N., Kamiński M., Kurlenda J., Asztemborska M., Ochocka J. R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytotherapy Research. 2003;17(3):227–231. doi: 10.1002/ptr.1110.
    1. Dai J., Zhu L., Yang L., Qiu J. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata . EXCLI Journal. 2013;12:479–490.
    1. Wang W., Li N., Luo M., Zu Y., Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012;17(3):2704–2713. doi: 10.3390/molecules17032704.
    1. Matsuzaki Y., Tsujisawa T., Nishihara T., Nakamura M., Kakinoki Y. Antifungal activity of chemotype essential oils from rosemary against Candida albicans . Open Journal of Stomatology. 2013;3(2):176–182. doi: 10.4236/ojst.2013.32031.
    1. Rivas da Silva A. C., Lopes P. M., Barros de Azevedo M. M., Costa D. C. M., Alviano C. S., Alviano D. S. Biological activities of α-pinene and β-pinene enantiomers. Molecules. 2012;17(6):6305–6316. doi: 10.3390/molecules17066305.
    1. Cavaleiro C., Pinto E., Gonçalves M. J., Salgueiro L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains . Journal of Applied Microbiology. 2006;100(6):1333–1338. doi: 10.1111/j.1365-2672.2006.02862.x.
    1. Singh P., Shukla R., Prakash B., et al. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology. 2010;48(6):1734–1740. doi: 10.1016/j.fct.2010.04.001.
    1. Ünal M. Ü., Uçan F., Şener A., Dinçer S. Research on antifungal and inhibitory effects of DL-limonene on some yeasts. Turkish Journal of Agriculture and Forestry. 2012;36(5):576–582. doi: 10.3906/tar-1104-41.
    1. Marei G. I. K., Abdel Rasoul M. A., Abdelgaleil S. A. M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology. 2012;103(1):56–61. doi: 10.1016/j.pestbp.2012.03.004.
    1. Mitchell A. P. Dimorphism and virulence in Candida albicans . Current Opinion in Microbiology. 1998;1(6):687–692. doi: 10.1016/s1369-5274(98)80116-1.
    1. Saville S. P., Lazzell A. L., Bryant A. P., et al. Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrobial Agents and Chemotherapy. 2006;50(10):3312–3316. doi: 10.1128/AAC.00628-06.
    1. Zore G. B., Thakre A. D., Rathod V., Karuppayil S. M. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses. 2011;54(4):e99–e109. doi: 10.1111/j.1439-0507.2009.01852.x.
    1. Vuong C., Kocianova S., Voyich J. M., et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. The Journal of Biological Chemistry. 2004;279(52):54881–54886. doi: 10.1074/jbc.m411374200.
    1. Soto S. M., Smithson A., Horcajada J. P., Martinez J. A., Mensa J. P., Vila J. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli . Clinical Microbiology and Infection. 2006;12(10):1034–1036. doi: 10.1111/j.1469-0691.2006.01543.x.
    1. Neves Â., Rosa S., Gonçalves J., et al. Screening of five essential oils for identification of potential inhibitors of IL-1-induced Nf-κB activation and NO production in human chondrocytes: characterization of the inhibitory activity of α-pinene. Planta Medica. 2010;76(3):303–308. doi: 10.1055/s-0029-1186085.
    1. Quintans-Júnior L., Moreira J. C. F., Pasquali M. A. B., et al. Antinociceptive activity and redox profile of the monoterpenes (+)-camphene, p-cymene, and geranyl acetate in experimental models. ISRN Toxicology. 2013;2013:11. doi: 10.1155/2013/459530.459530
    1. Rufino A. T., Ribeiro M., Judas F., et al. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. Journal of Natural Products. 2014;77(2):264–269. doi: 10.1021/np400828x.

Source: PubMed

3
Iratkozz fel