Age- and disease-specific changes of the kynurenine pathway in Parkinson's and Alzheimer's disease

Freek J H Sorgdrager, Yannick Vermeiren, Martijn Van Faassen, Claude van der Ley, Ellen A A Nollen, Ido P Kema, Peter P De Deyn, Freek J H Sorgdrager, Yannick Vermeiren, Martijn Van Faassen, Claude van der Ley, Ellen A A Nollen, Ido P Kema, Peter P De Deyn

Abstract

The kynurenine (Kyn) pathway, which regulates neuroinflammation and N-methyl-d-aspartate receptor activation, is implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). Age-related changes in Kyn metabolism and altered cerebral Kyn uptake along large neutral amino acid transporters, could contribute to these diseases. To gain further insight into the role and prognostic potential of the Kyn pathway in PD and AD, we investigated systemic and cerebral Kyn metabolite production and estimations of their transporter-mediated uptake in the brain. Kyn metabolites and large neutral amino acids were retrospectively measured in serum and cerebrospinal fluid (CSF) of clinically well-characterized PD patients (n = 33), AD patients (n = 33), and age-matched controls (n = 39) using solid-phase extraction-liquid chromatographic-tandem mass spectrometry. Aging was disease independently associated with increased Kyn, kynurenic acid and quinolinic acid in serum and CSF. Concentrations of kynurenic acid were reduced in CSF of PD and AD patients (p = 0.001; p = 0.002) but estimations of Kyn brain uptake did not differ between diseased and controls. Furthermore, serum Kyn and quinolinic acid levels strongly correlated with their respective content in CSF and Kyn in serum negatively correlated with AD disease severity (p = 0.002). Kyn metabolites accumulated with aging in serum and CSF similarly in PD patients, AD patients, and control subjects. In contrast, kynurenic acid was strongly reduced in CSF of PD and AD patients. Differential transporter-mediated Kyn uptake is unlikely to majorly contribute to these cerebral Kyn pathway disturbances. We hypothesize that the combination of age- and disease-specific changes in cerebral Kyn pathway activity could contribute to reduced neurogenesis and increased excitotoxicity in neurodegenerative disease.

Keywords: Alzheimer’s disease; Parkinson’s disease; ageing; kynurenic acid; kynurenine; neurodegeneration.

© 2019 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

Figures

Figure 1
Figure 1
Aging affects peripheral and central Kyn pathway metabolites but not LNAAs. (a) Trp is taken up from the diet and processed intra‐ and extrahepatically. Kyn metabolites are mainly produced in extrahepatic tissue. (b) Trp, Kyn, and 3‐HK compete with LNAA for transport across the BBB. (c) In the brain, the Kyn pathway is segregated based on cell‐type; astrocytes mainly produce KA while microglia produce quinolinic acid. These metabolites can be released in the extracellular space and CSF. (d) Scatterplot showing the relationship between age and standardized scores for Trp and Kyn metabolites or LNAAs (e) in serum and CSF of controls, PD and AD patients. The best‐fit line from linear regression (including 95% confidence interval) as well as the F‐value is provided for model comparison. *p < 0.01 for F‐tests. 3‐Hk, 3‐hydroxykynurenine; AD, Alzheimer’s disease; BBB, blood–brain barrier; CSF, cerebrospinal fluid; Ile, isoleucine; KA, kynurenic acid; Kyn, kynurenine; Leu, leucine; LNAA, large neutral amino acids; PD, Parkinson’s disease; Phe, phenylalanine; Trp, tryptophan; Tyr, tyrosine; Val, valine; XA, xanthurenic acid. *p < 0.01.
Figure 2
Figure 2
Specific alterations in central Kyn pathway activity in PD and AD but no evidence of altered transporter‐mediated Kyn brain transport. (a) Scatter plots showing serum and CSF concentrations for Trp and Kyn metabolites, LNAA (b) and indices for transporter‐mediated brain uptake of Trp, Kyn and 3‐HK (c) in control (green), PD (orange), and AD (purple) patients (for serum: n = 38, 31 and 32–33, respectively; for CSF: n = 34–35, 26, and 29–32, respectively). Median and estimated 95% confidence intervals are provided. Log scales are used in case of skewed distribution. *p < 0.01, #p < 0.05 for Mann–Whitney U tests comparing control to PD or AD. Abbreviations as in Fig. 1. LOQ, limit of quantification.
Figure 3
Figure 3
Peripheral Kyn pathway metabolites as biomarkers for brain Kyn pathway activity and in AD disease severity. (a) Scatterplot showing the relationship between serum and CSF metabolite concentrations (standardized scores) for healthy controls (n = 34), PD (n = 24), and AD (n = 32) patients. The best‐fit line from linear regression (including 95% confidence interval) as well as the F‐value is provided to compare models. *p < 0.01 for F‐tests. (b) Table that shows correlation coefficients between Kyn metabolites (in serum or CSF) and AD disease severity measured by MMSE (with a lower score indicating more severe disease). *p < 0.01, #p < 0.05 for Spearman’s rank correlation coefficient. (c) Hypothetical model of findings. Aging is associated with increased Trp metabolism toward the Kyn pathway. This increases brain Kyn content either directly or as a result of increased systemic uptake. This causes increased production of Kyn metabolites including KA and QA. In PD and AD, cerebral KA content seems to be lower. This could be associated with altered NMDA receptor activity and impact the course of these diseases. Abbreviations as in Fig. 1. MMSE, mini‐mental state examination; NMDA, N‐methyl‐d‐aspartate.

References

    1. Agudelo L. Z., Ferreira D. M. S., Cervenka I., et al (2018) Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392.e5.
    1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM‐IV‐TR. Am. Psychiatr. Assoc. 1844, 1–20.
    1. Ara I. and Bano S. (2012) Citalopram decreases tryptophan 2,3‐dioxygenase activity and brain 5‐HT turnover in swim stressed rats. Pharmacol. Rep. 64, 558–66.
    1. Badawy A. A.‐B. (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res. 10, 1178646917691938.
    1. Ben Haim L., Carrillo‐de Sauvage M.‐A., Ceyzériat K. and Escartin C. (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 9, 278.
    1. de Bie J., Guest J., Guillemin G. J. and Grant R. (2016) Central kynurenine pathway shift with age in women. J. Neurochem. 136, 995–1003.
    1. Braidy N., Guillemin G. J., Mansour H., Chan‐Ling T. and Grant R. (2011) Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J. 278, 4425–4434.
    1. Cassé F., Richetin K. and Toni N. (2018) Astrocytes’ contribution to adult neurogenesis in physiology and Alzheimer’s disease. Front. Cell. Neurosci. 12, 432.
    1. Cervenka I., Agudelo L. Z. and Ruas J. L. (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357, eaaf9794.
    1. Chang K. H., Cheng M. L., Tang H. Y., Huang C. Y., Wu Y. R. and Chen C. M. (2018) Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol. Neurobiol. 55, 6319–6328.
    1. Engelborghs S., Marescau B., and De Deyn P. P. (2003) Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson’s disease. Neurochem. Res. 28, 1145–1150.
    1. Engelborghs S., Maertens K., Nagels G., et al (2005) Neuropsychiatric symptoms of dementia: cross‐sectional analysis from a prospective, longitudinal Belgian study. Int. J. Geriatr. Psychiatry 20, 1028–1037.
    1. Engelborghs, S. , De Vreese, K. , Van de Casteele, T. , Vanderstichele, H. , Van Everbroeck, B. , Cras, P. , Martin, J. J. , Vanmechelen, E. and De Deyn, P. P. (2008) Diagnostic performance of a CSF‐biomarker panel in autopsy‐confirmed dementia. Neurobiol. Aging 29, 1143–1159.
    1. Erhardt S., Schwieler L., Imbeault S. and Engberg G. (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112, 297–306.
    1. Eskelund A., Li Y., Budac D. P., Müller H. K., Gulinello M., Sanchez C. and Wegener G. (2017) Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression‐like behavior. J. Neurochem. 142, 118–131.
    1. Feigin V. L., Abajobir A. A., Abate K. H., et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897.
    1. Fernstrom J. D. (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45, 419–430.
    1. Fernstrom J. D. and Wurtman R. J. (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149–152.
    1. Forrest C. M., McNair K., Pisar M., Khalil O. S., Darlington L. G. and Stone T. W. (2015) Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine‐3‐monoxygenase (KMO) deletion or galantamine. Neuroscience 310, 91–105.
    1. Fukui S., Schwarcz R., Rapoport S. I., Takada Y. and Smith Q. R. (1991) Blood‐brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56, 2007–2017.
    1. Gibney S. M., Fagan E. M., Waldron A.‐M., O’Byrne J., Connor T. J. and Harkin A. (2014) Inhibition of stress‐induced hepatic tryptophan 2,3‐dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int. J. Neuropsychopharmacol. 17, 917–28.
    1. Giil L. M., Midttun O., Refsum H., Ulvik A., Advani R., Smith A. D. and Ueland P. M. (2017) Kynurenine pathway metabolites in Alzheimer’s disease. J. Alzheimer’s Dis. 60, 495–504.
    1. Glass C. K., Saijo K., Winner B., Marchetto M. C. and Gage F. H. (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934.
    1. González Esquivel D., Ramírez‐Ortega D., Pineda B., Castro N., Ríos C. and Pérez de la Cruz V. (2017) Kynurenine pathway metabolites and enzymes involved in redox reactions. Neuropharmacology 112, 331–345.
    1. Gramsbergen J. B. P., Schmidt W., Turski W. A. and Schwarcz R. (1992) Age‐related changes in kynurenic acid production in rat brain. Brain Res. 588, 1–5.
    1. Grégoire L., Rassoulpour A., Guidetti P., Samadi P., Bédard P. J., Izzo E., Schwarcz R. and Di Paolo T. (2008) Prolonged kynurenine 3‐hydroxylase inhibition reduces development of levodopa‐induced dyskinesias in parkinsonian monkeys. Behav. Brain Res. 186, 161–167.
    1. Guidetti P., Hoffman G. E., Melendez‐Ferro M., Albuquerque E. X. and Schwarcz R. (2007) Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 55, 78–92.
    1. Guillemin G. J., Kerr S. J., Smythe G. A., Smith D. G., Kapoor V., Armati P. J., Croitoru J. and Brew B. J. (2001) Kynurenine pathway metabolism in human astrocytes: A paradox for neuronal protection. J. Neurochem. 78, 842–853.
    1. Gulaj E., Pawlak K., Bien B. and Pawlak D. (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci. 55, 204–211.
    1. Hartai Z., Juhász A., Rimanóczy Á., Janáky T., Donkó T., Dux L., Penke B., Tóth G. K., Janka Z. and Kálmán J. (2007) Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem. Int. 50, 308–313.
    1. Havelund J. F., Andersen A. D., Binzer M., Blaabjerg M., Heegaard N. H. H., Stenager E., Færgeman N. J. and Gramsbergen J. B. (2017) Changes in kynurenine pathway metabolism in Parkinson patients with L‐DOPA‐induced dyskinesia. J. Neurochem. 142, 756–766.
    1. Herédi J., Berkó A. M., Jankovics F., et al (2017) Astrocytic and neuronal localization of kynurenine aminotransferase‐2 in the adult mouse brain. Brain Struct. Funct. 222, 1663–1672.
    1. Heyes M. P., Saito K., Crowley J. S., et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non‐inflammatory neurological disease. Brain 115, 1249–1273.
    1. Hoehn M. M. and Yahr M. D. (1967) Parkinsonism: onset, progression, and mortality Parkinsonism: onset, progression, and mortality. Neurology 17, 427–442.
    1. Jha S. K., Jha N. K., Kumar D., Ambasta R. K. and Kumar P. (2017) Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim. Biophys. Acta – Mol. Basis Dis. 1863, 1132–1146.
    1. Jong W. H., de Smit R., Bakker S. J. L., Vries E. G. E. and de Kema I. P. (2009) Plasma tryptophan, kynurenine and 3‐hydroxykynurenine measurement using automated on‐line solid‐phase extraction HPLC‐tandem mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877, 603–609.
    1. Kiss C., Ceresoli‐Borroni G., Guidetti P., Zielke C. L., Zielke H. R. and Schwarcz R. (2003) Kynurenate production by cultured human astrocytes. J. Neural. Transm. 110, 1–14.
    1. Kocki T., Wnuk S., Kloc R., Kocki J., Owe‐Larsson B. and Urbanska E. M. (2012) New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3‐hydroxykynurenine ratio. J. Neural Transm. 119, 235–243.
    1. Kumar N., Van Gerpen J. A., Bower J. H. and Ahlskog J. E. (2005) Levodopa‐dyskinesia incidence by age of Parkinson's disease onset. Mov. Disord. 20, 342–344.
    1. Leppik L., Kriisa K., Koido K., Koch K., Kajalaid K., Haring L., Vasar E. and Zilmer M. (2018) Profiling of amino acids and their derivatives biogenic amines before and after antipsychotic treatment in first‐episode psychosis. Front. Psychiatry 9 10.3389/fpsyt.2018.00155.
    1. Liddelow S. A., Guttenplan K. A., Clarke L. E., et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487.
    1. Lim C. K., Fernández‐Gomez F. J., Braidy N., et al (2017) Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog. Neurogibol. 155, 76–95.
    1. Lipton S. A. (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5, 160–170.
    1. Maddison D. C. and Giorgini F. (2015) The kynurenine pathway and neurodegenerative disease. Semin. Cell Dev. Biol. 40, 134–141.
    1. McKhann G., Drachman D. A., Folstein M., Katzman R., Price D. and Stadlan E. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–944.
    1. Meinitzer A., Tomaschitz A., Pilz S., Truber M., Zechner G., Gaksch M., Prietl B., Treiber G., Schwarz M. and Baranyi A. (2014) Development of a liquid chromatography‐mass spectrometry method for the determination of the neurotoxic quinolinic acid in human serum. Clin. Chim. Acta 436, 268–72.
    1. Minhas P. S., Liu L., Moon P. K., et al (2019) Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63.
    1. Moroni F., Cozzi A., Carpendo R., Cipriani G., Veneroni O. and Izzo E. (2005) Kynurenine 3‐mono‐oxygenase inhibitors reduce glutamate concentration in the extracellular spaces of the basal ganglia but not in those of the cortex or hippocampus. Neuropharmacology 48, 788–795.
    1. Munn D. H. and Mellor A. L. (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–43.
    1. Myint A. M., Schwarz M. J., Verkerk R., Mueller H. H., Zach J., Scharpé S., Steinbusch H. W. M., Leonard B. E. and Kim Y. K. (2011) Reversal of imbalance between kynurenic acid and 3‐hydroxykynurenine by antipsychotics in medication‐naïve and medication‐free schizophrenic patients. Brain Behav. Immun. 25, 1576–1581.
    1. Ogawa T., Matson W. R., Beal M. F., Myers R. H., Bird E. D., Milbury P. and Saso S. (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42, 1702–1702.
    1. Olivares D., Deshpande V. K., Shi Y., Lahiri D. K., Greig N. H., Rogers J. T. and Huang X. (2012) N‐methyl D‐aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr. Alzheimer Res. 9, 746–58.
    1. Oxenkrug G. F. (2010) Metabolic syndrome, age‐associated neuroendocrine disorders, and dysregulation of tryptophan – kynurenine metabolism. Ann. N. Y. Acad. Sci. 1199, 1–14.
    1. Platten M., Wick W. and Van den Eynde B. J. (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 72, 5435–5440.
    1. Pocivavsek A., Wu H.‐Q., Potter M. C., Elmer G. I., Pellicciari R. and Schwarcz R. (2011) Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 36, 2357–2367.
    1. Prange S., Danaila T., Laurencin C., Caire C., Metereau E., Merle H., Broussolle E., Maucort‐Boulch D. and Thobois S. (2019) Age and time course of long‐term motor and nonmotor complications in Parkinson disease. Neurology 92, e148–e160.
    1. Salminen A., Kaarniranta K. and Kauppinen A. (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4, 166–175.
    1. Schröcksnadel K., Wirleitner B., Winkler C. and Fuchs D. (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta 364, 82–90.
    1. Schwarcz R. and Stone T. W. (2017) The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112, 237–247.
    1. Schwarcz R., Bruno J. P., Muchowski P. J. and Wu H. Q. (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13, 465–477.
    1. Schwarz M. J., Guillemin G. J., Teipel S. J., Buerger K. and Hampel H. (2013) Increased 3‐Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur. Arch. Psychiatry Clin. Neurosci. 263, 345–352.
    1. Song C., Clark S. M., Vaughn C. N., Nicholson J. D., Murphy K. J., Mou T.‐C. M., Schwarcz R., Hoffman G. E. and Tonelli L. H. (2018) Quantitative analysis of kynurenine aminotransferase II in the adult rat brain reveals high expression in proliferative zones and corpus callosum. Neuroscience 369, 1–14.
    1. Stone T. W., Stoy N. and Darlington L. G. (2013) An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol. Sci. 34, 136–143.
    1. Tabachnik B. G. and Fidell L. S. (2013) Using Multivariate Statistics. Pearson Education, Harlow, UK.
    1. Theofylaktopoulou D., Midttun Ø., Ulvik A., Ueland P. M., Tell G. S., Vollset S. E., Nygård O. and Eussen S. J. P. M. (2013) A community‐based study on determinants of circulating markers of cellular immune activation and kynurenines: the Hordaland Health Study. Clin. Exp. Immunol. 173, 121–30.
    1. Ulvik A., Theofylaktopoulou D., Midttun Ø., Nygård O., Eussen S. J. and Ueland P. M. (2013) Substrate product ratios of enzymes in the kynurenine pathway measured in plasma as indicators of functional vitamin B‐6 status. Am. J. Clin. Nutr. 98, 934–940.
    1. Van Der Zee S., Vermeiren Y., Fransen E., Van Dam D., Aerts T., Gerritsen M. J., Spikman J. M., Van Laar T. and De Deyn P. P. (2018) Monoaminergic markers across the cognitive spectrum of lewy body disease. J. Parkinsons Dis. 8, 71–84.
    1. Van Gool A. R., Verkerk R., Fekkes D., et al (2008) Neurotoxic and neuroprotective metabolites of kynurenine in patients with renal cell carcinoma treated with interferon‐y: course and relationship with psychiatric status. Psychiatry Clin. Neurosci. 62, 597–602.
    1. Vancassel S., Capuron L. and Castanon N. (2018) Brain kynurenine and BH4 pathways: relevance to the pathophysiology and treatment of inflammation‐driven depressive symptoms. Front. Neurosci. 12 10.3389/fnins.2018.00499.
    1. Vermeiren Y., Le Bastard N., Van Hemelrijck A., Drinkenburg W. H., Engelborghs S. and De Deyn P. P. (2013) Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia. Alzheimer’s Dement. 9, 488–498.
    1. Vermeiren Y., Dam D., Van Aerts T., Engelborghs S. and De Deyn P. P. (2014) Monoaminergic neurotransmitter alterations in postmortem brain regions of depressed and aggressive patients with Alzheimer’s disease. Neurobiol. Aging 35, 2691–2700.
    1. Wennstrom M., Nielsen H. M., Orhan F., Londos E., Minthon L. and Erhardt S. (2014) Kynurenic Acid levels in cerebrospinal fluid from patients with Alzheimer’s disease or dementia with lewy bodies. Int. J. Tryptophan Res. 7, 1–7.
    1. Widner B., Leblhuber F., Walli J., Tilz G. P., Demel U. and Fuchs D. (2000) Tryptophan degradation and immune activation in Alzheimer’s disease. J. Neural Transm. 107, 343–353.
    1. Wyss‐Coray T. (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186.
    1. Zwilling D., Huang S. Y., Sathyasaikumar K. V., et al (2011) Kynurenine 3‐monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874.

Source: PubMed

3
Iratkozz fel