Sentry Bioconvertible Inferior Vena Cava Filter: Study of Stages of Incorporation in an Experimental Ovine Model

Peter A Gaines, Frank D Kolodgie, Gordon Crowley, Steven Horan, Megan MacDonagh, Emily McLucas, David Rosenthal, Ashley Strong, Michael Sweet, Deepal K Panchal, Peter A Gaines, Frank D Kolodgie, Gordon Crowley, Steven Horan, Megan MacDonagh, Emily McLucas, David Rosenthal, Ashley Strong, Michael Sweet, Deepal K Panchal

Abstract

The Sentry inferior vena cava (IVC) filter is designed to provide temporary protection from pulmonary embolism (PE) and then bioconvert to become incorporated in the vessel wall, leaving a patent IVC lumen. Objective. To evaluate the performance and stages of incorporation of the Sentry IVC filter in an ovine model. Methods. Twenty-four bioconvertible devices and 1 control retrievable filter were implanted in the infrarenal IVC of 25 sheep, with extensive daily monitoring and intensive imaging. Vessels and devices were analyzed at early (≤98 days, n = 10) and late (180 ± 30 days, n = 14 study devices, 1 control) termination and necropsy time-points. Results. Deployment success was 100% with all devices confirmed in filtering configuration, there were no filter-related complications, and bioconversion was 100% at termination with vessels widely patent. By 98 days for all early-incorporation analysis animals, the stabilizing cylindrical part of the Sentry frame was incorporated in the vessel wall, and the filter arms were retracted. By 180 days for all late-incorporation analysis animals, the filter arms as well as frames were stably incorporated. Conclusions. Through 180 days, there were no filter-related complications, and the study devices were all bioconverted and stably incorporated, leaving all IVCs patent.

Figures

Figure 1
Figure 1
Sentry IVC filter in filtering (left) and bioconverted (right) configurations.
Figure 2
Figure 2
Study design.
Figure 3
Figure 3
Representative imaging for an animal from the late-incorporation analysis cohort. Left: venogram of the Sentry IVC filter on the day of implantation. Middle: X-ray of the bioconverted filter. Right: CT reconstruction showing bioconversion of the Sentry IVC filter.
Figure 4
Figure 4
IVC from an animal from the early-incorporation analysis cohort terminated at 97 days. Laparoscopic imaging at necropsy of IVC sections containing the Sentry IVC filter, showing the unobstructed patent lumen and the nearly complete incorporation of the filter frame.
Figure 5
Figure 5
Imaging of the IVC segments with the control OptEase device (terminated at 183 days). Left: preexplant digital photograph of IVC sections with the implanted control OptEase Retrievable Vena Cava Filter. Right: a transverse section stained with toluidine blue/basic fuchsin, demonstrating incorporation of the device into the wall of the IVC.
Figure 6
Figure 6
Representative images of IVC sections with the Sentry IVC filter (terminated at 184 days). Left: preexplant digital photograph of IVC sections with the implanted Sentry device. Middle: laparoscopic image of IVC filter within the IVC, demonstrating lumen patency. Right: transverse section stained with toluidine blue/basic fuchsin, demonstrating incorporation into the wall of the IVC. The green box indicates mild neointimal proliferation.
Figure 7
Figure 7
Representative high-power images from the histological analysis of the integration of the Sentry filter arms into the wall of the IVC. Left: section cut through the tips of the filter arms, stained with H&E. Right: view of residual PPDO filament material, surrounding chronic inflammatory cells adjacent to the fully incorporated tip of a filter arm (dark red box in the image at left).

References

    1. Park B., Messina L., Dargon P., Wei H., Ciocca R., Anderson F. A. Recent trends in clinical outcomes and resource utilization for pulmonary embolism in the United States: Findings from the nationwide inpatient sample. CHEST. 2009;136(4):983–990. doi: 10.1378/chest.08-2258.
    1. Kahn S. R., Houweling A. H., Granton J., Rudski L., Dennie C., Hirsch A. Long-term outcomes after pulmonary embolism: Current knowledge and future research. Blood Coagulation & Fibrinolysis. 2014;25(5):407–415. doi: 10.1097/MBC.0000000000000070.
    1. ACR-SIR-SPR practice parameter for the performance of inferior vena cava (IVC) filter placeent for the prevention of pulmonary embolism, Available at: , 2018.
    1. Angel L. F., Tapson V., Galgon R. E., Restrepo M. I., Kaufman J. Systematic review of the use of retrievable inferior vena cava filters. Journal of Vascular and Interventional Radiology. 2011;22(11):1522–1530. doi: 10.1016/j.jvir.2011.08.024.
    1. Desai S. S., Naddaf A., Pan J., Hood D., Hodgson K. J. Impact of consensus statements and reimbursement on vena cava filter utilization. Journal of Vascular Surgery. 2016;64(2):425–429. doi: 10.1016/j.jvs.2016.01.046.
    1. Goldhaber S. Z. Venous thromboembolism: Epidemiology and magnitude of the problem. Best Practice & Research Clinical Haematology. 2012;25(3):235–242. doi: 10.1016/j.beha.2012.06.007.
    1. Caplin D. M., Nikolic B., Kalva S. P., Ganguli S., Saad W. E. A., Zuckerman D. A. Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism. Journal of Vascular and Interventional Radiology. 2011;22(11):1499–1506. doi: 10.1016/j.jvir.2011.07.012.
    1. Kearon C., Akl E. A., Ornelas J., et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. CHEST. 2016;149(2):315–352. doi: 10.1016/j.chest.2015.11.026.
    1. Montgomery J. P., Kaufman J. A. Inferior vena cava filters: indications, outcomes, and evidence. Current Treatment Options in Cardiovascular Medicine. 2015;17(9):p. 401. doi: 10.1007/s11936-015-0401-2.
    1. Kaufman J. A., Kinney T. B., Streiff M. B., et al. Guidelines for the use of retrievable and convertible vena cava filters: Report from the Society of Interventional Radiology Multidisciplinary Consensus Conference. Surgery for Obesity and Related Diseases. 2006;2(2):200–212. doi: 10.1016/j.soard.2006.03.009.
    1. Andreoli J. M., Lewandowski R. J., Vogelzang R. L., Ryu R. K. Comparison of complication rates associated with permanent and retrievable inferior vena cava filters: a review of the MAUDE database. Journal of Vascular and Interventional Radiology. 2014;25(8):1181–1185. doi: 10.1016/j.jvir.2014.04.016.
    1. Wang S. L., Cha H.-H. A., Lin J. R., et al. Impact of physician education and a dedicated inferior vena cava filter tracking system on inferior vena cava filter use and retrieval rates across a large US health care region. Journal of Vascular and Interventional Radiology. 2016;27(5):740–748. doi: 10.1016/j.jvir.2016.01.130.
    1. Desai T. R., Morcos O. C., Lind B. B., et al. Complications of indwelling retrievable versus permanent inferior vena cava filters. Journal of Vascular Surgery: Venous and Lymphatic Disorders. 2014;2(2):166–173. doi: 10.1016/j.jvsv.2013.10.050.
    1. Deso S. E., Idakoji I. A., Kuo W. T. Evidence-Based Evaluation of Inferior Vena Cava Filter Complications Based on Filter Type. Seminars in Interventional Radiology. 2016;33(2):93–100. doi: 10.1055/s-0036-1583208.
    1. Sella D. M., Oldenburg W. A. Complications of inferior vena cava filters. Seminars in Vascular Surgery. 2013;26(1):23–28. doi: 10.1053/j.semvascsurg.2013.04.005.
    1. Morales J. P., Li X., Irony T. Z., Ibrahim N. G., Moynahan M., Cavanaugh K. J. Decision analysis of retrievable inferior vena cava filters in patients without pulmonary embolism. Journal of Vascular Surgery: Venous and Lymphatic Disorders. 2013;1(4):376–384. doi: 10.1016/j.jvsv.2013.04.005.
    1. US Food and Drug Administration. Removing retrievable inferior vena cava filters: FDA safety communication, Available at: , 2018.
    1. Jin C., Liang B., Li J., Li F. Biodegradation behaviors of poly(p-dioxanone) in different environment media. Journal of Polymers and the Environment. 2013;21(4):1088–1099. doi: 10.1007/s10924-013-0613-z.
    1. Murphy E. H., White R. A., Rosenthal D., et al. Evaluation of the Crux IVC filter in an animal model. Journal of Endovascular Therapy. 2008;15(3):292–299. doi: 10.1583/08-2374.1.
    1. Brountzos E. N., Kaufman J. A., Venbrux A. C., et al. A new optional vena cava filter: Retrieval at 12 weeks in an animal model. Journal of Vascular and Interventional Radiology. 2003;14(6):763–772. doi: 10.1097/.
    1. Byrom M. J., Bannon P. G., White G. H., Ng M. K. C. Animal models for the assessment of novel vascular conduits. Journal of Vascular Surgery. 2010;52(1):176–195. doi: 10.1016/j.jvs.2009.10.080.
    1. Murphy E. H., Arko F. R., Trimmer C. K., Phangureh V. S., Fogarty T. J., Zarins C. K. Volume associated dynamic geometry and spatial orientation of the inferior vena cava. Journal of Vascular Surgery. 2009;50(4):835–843. doi: 10.1016/j.jvs.2009.05.012.
    1. Sing R. F., Camp S. M., Heniford B. T., et al. Timing of pulmonary emboli after trauma: Implications for retrievable vena cava filters. Journal of Trauma - Injury Infection and Critical Care. 2006;60(4):732–735. doi: 10.1097/01.ta.0000210285.22571.66.
    1. Spencer Netto F., Tien H., Ng J., et al. Pulmonary emboli after blunt trauma: Timing, clinical characteristics and natural history. Injury. 2012;43(9):1502–1506. doi: 10.1016/j.injury.2010.12.028.
    1. Batty L. M., Lyon S. M., Dowrick A. S., Bailey M., Mahar P. D., Liew S. M. Pulmonary embolism and the use of vena cava filters after major trauma. ANZ Journal of Surgery. 2012;82(11):817–821. doi: 10.1111/j.1445-2197.2012.06192.x.
    1. Hope W. W., Demeter B. L., Newcomb W. L., et al. Postoperative pulmonary embolism: timing, diagnosis, treatment, and outcomes. The American Journal of Surgery. 2007;194(6):814–819. doi: 10.1016/j.amjsurg.2007.08.014.
    1. Arcelus J. I., Monreal M., Caprini J. A., et al. Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE Registry. Thrombosis and Haemostasis. 2008;99(3):546–551. doi: 10.1160/TH07-10-0611.
    1. Bjornara B. T., Gudmundsen T. E., Dahl O. E. Frequency and timing of clinical venous thromboembolism after major joint surgery. Journal of Bone and Joint Surgery. 2006;88(3):386–391.
    1. Parvizi J., Huang R., Raphael I. J., Maltenfort M. G., Arnold W. V., Rothman R. H. Timing of symptomatic pulmonary embolism with warfarin following arthroplasty. The Journal of Arthroplasty. 2015;30(6):1050–1053. doi: 10.1016/j.arth.2015.01.004.
    1. Van Ha T. G. Complications of inferior vena caval filters. Seminars in Interventional Radiology. 2006;23(2):150–155. doi: 10.1055/s-2006-941445.
    1. Dinglasan L. A. V., Oh J. C., Schmitt J. E., Trerotola S. O., Shlansky-Goldberg R. D., Stavropoulos S. W. Complicated inferior vena cava filter retrievals: Associated factors identified at preretrieval CT. Radiology. 2013;266(1):347–354. doi: 10.1148/radiol.12120372.
    1. Nicholson W., Nicholson W. J., Tolerico P., et al. Prevalence of fracture and fragment embolization of Bard retrievable vena cava filters and clinical implications including cardiac perforation and tamponade. Archives of Internal Medicine. 2010;170(20):1827–1831. doi: 10.1001/archinternmed.2010.316.
    1. Decousus H. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: The PREPIC (Prévention du Risque d'Embolie Pulmonaire par Interruption Cave) randomized study. Circulation. 2005;112(3):416–422. doi: 10.1161/CIRCULATIONAHA.104.512834.
    1. Arous E. J., Messina L. M. Temporary inferior vena cava filters: How do we move forward? CHEST. 2016;149(5):1143–1145. doi: 10.1016/j.chest.2016.03.015.
    1. Rogers F. B., Shackford S. R., Miller J. A., Wu D., Rogers A., Gambler A. Improved recovery of prophylactic inferior vena cava filters in trauma patients: the results of a dedicated filter registry and critical pathway for filter removal. The Journal of Trauma and Acute Care Surgery. 2012;72(2):381–384. doi: 10.1097/ta.0b013e3182447811.
    1. Singer M. A., Henshaw W. D., Wang S. L. Computational modeling of blood flow in the TrapEase inferior vena cava filter. Journal of Vascular and Interventional Radiology. 2009;20(6):799–805. doi: 10.1016/j.jvir.2009.02.015.
    1. Singer M. A., Wang S. L. Modeling blood flow in a tilted inferior vena cava filter: Does tilt adversely affect hemodynamics? Journal of Vascular and Interventional Radiology. 2011;22(2):229–235. doi: 10.1016/j.jvir.2010.09.032.
    1. Lesiak M., Araszkiewicz A. “Leaving nothing behind”: Is the bioresorbable vascular scaffold a new hope for patients with coronary artery disease? Postepy w Kardiologii Interwencyjnej. 2014;10(4):283–288. doi: 10.5114/pwki.2014.46940.
    1. Yuan Y., Ding S.-D., Zhao Y.-Q., Wang Y.-Z. Hydrolytic degradation behaviors of poly(p-dioxanone) in ambient environments. Chinese Journal of Polymer Science. 2014;32(12):1678–1689. doi: 10.1007/s10118-014-1545-3.
    1. Hoppe H., Beyer T. J., Park W.-K., et al. Optional vena cava filter with disengaging centering struts: retrieval in an animal model. Journal of Vascular and Interventional Radiology. 2008;19(12):1772–1776. doi: 10.1016/j.jvir.2008.09.006.
    1. Reekers J. A., Hoogeveen Y. L., Wijnands M., Bosma G., Mulder R., Oliva V. L. Evaluation of the retrievability of the OptEase IVC filter in an animal model. Journal of Vascular and Interventional Radiology. 2004;15(3):261–267. doi: 10.1097/01.RVI.0000116186.30591.49.

Source: PubMed

3
Iratkozz fel