Cardiac Troponin Thresholds and Kinetics to Differentiate Myocardial Injury and Myocardial Infarction

Ryan Wereski, Dorien M Kimenai, Caelan Taggart, Dimitrios Doudesis, Kuan Ken Lee, Matthew T H Lowry, Anda Bularga, David J Lowe, Takeshi Fujisawa, Fred S Apple, Paul O Collinson, Atul Anand, Andrew R Chapman, Nicholas L Mills, Ryan Wereski, Dorien M Kimenai, Caelan Taggart, Dimitrios Doudesis, Kuan Ken Lee, Matthew T H Lowry, Anda Bularga, David J Lowe, Takeshi Fujisawa, Fred S Apple, Paul O Collinson, Atul Anand, Andrew R Chapman, Nicholas L Mills

Abstract

Background: Although the 99th percentile is the recommended diagnostic threshold for myocardial infarction, some guidelines also advocate the use of higher troponin thresholds to rule in myocardial infarction at presentation. It is unclear whether the magnitude or change in troponin concentration can differentiate causes of myocardial injury and infarction in practice.

Methods: In a secondary analysis of a multicenter randomized controlled trial, we identified 46 092 consecutive patients presenting with suspected acute coronary syndrome without ST-segment-elevation myocardial infarction. High-sensitivity cardiac troponin I concentrations at presentation and on serial testing were compared between patients with myocardial injury and infarction. The positive predictive value and specificity were determined at the sex-specific 99th percentile upper reference limit and rule-in thresholds of 64 ng/L and 5-fold of the upper reference limit for a diagnosis of type 1 myocardial infarction.

Results: Troponin was above the 99th percentile in 8188 patients (18%). The diagnosis was type 1 or type 2 myocardial infarction in 50% and 14% and acute or chronic myocardial injury in 20% and 16%, respectively. Troponin concentrations were similar at presentation in type 1 (median [25th-75th percentile] 91 [30-493] ng/L) and type 2 (50 [22-147] ng/L) myocardial infarction and in acute (50 [26-134] ng/L) and chronic (51 [31-130] ng/L) myocardial injury. The 99th percentile and rule-in thresholds of 64 ng/L and 5-fold upper reference limit gave a positive predictive value of 57% (95% CI, 56%-58%), 59% (58%-61%), and 62% (60%-64%) and a specificity of 96% (96%-96%), 96% (96%-96%), and 98% (97%-98%), respectively. The absolute, relative, and rate of change in troponin concentration were highest in patients with type 1 myocardial infarction (P<0.001 for all). Discrimination improved when troponin concentration and change in troponin were combined compared with troponin concentration at presentation alone (area under the curve, 0.661 [0.642-0.680] versus 0.613 [0.594-0.633]).

Conclusions: Although we observed important differences in the kinetics, cardiac troponin concentrations at presentation are insufficient to distinguish type 1 myocardial infarction from other causes of myocardial injury or infarction in practice and should not guide management decisions in isolation. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01852123.

Keywords: kinetics; myocardial infarction; predictive value of tests; troponin.

Figures

Figure 1.
Figure 1.
High-sensitivity cardiac troponin I concentrations at presentation in patients with myocardial injury and infarction. Kernel density plot of presentation troponin concentration stratified by the adjudicated diagnosis: type 1 myocardial infarction (MI; red), type 2 MI (yellow), acute myocardial injury (blue), and chronic myocardial injury (gray).
Figure 2.
Figure 2.
Positive predictive value of high-sensitivity cardiac troponin I concentration at presentation for a diagnosis of type 1 myocardial infarction. Positive predictive value and 95% CIs of high-sensitivity cardiac troponin I concentration at presentation for type 1 myocardial infarction in all patients with suspected acute coronary syndrome (blue) and in those with a primary symptom of chest pain (red). Dotted lines illustrate the positive predictive value of the uniform 99th percentile and 5-fold upper reference limit (URL).
Figure 3.
Figure 3.
Kinetics of high-sensitivity cardiac troponin I concentration from symptom onset in patients with myocardial injury and infarction. Spaghetti plot illustrating high-sensitivity cardiac troponin I concentrations in relation to the time of symptom onset in individual patients stratified by the adjudicated diagnosis: type 1 myocardial infarction (red), type 2 myocardial infarction (yellow), acute myocardial injury (blue), and chronic myocardial injury (gray). Plot is restricted to those patients in whom any troponin concentration was above the sex-specific 99th percentile concentration during serial testing within 12 hours of presentation and for whom the time of symptom onset was known (n=3845). Linear mixed-effects modeling was done using random intercepts and random slopes, including quadratic terms for time, with cardiac troponin I as outcome. The output from a linear mixed-effects model incorporating time from symptom onset, troponin, and change in troponin concentration is overlaid for each condition. For each condition, the final model to estimate the trajectory of cardiac troponin I was chosen according to the Akaike information criteria.
Figure 4.
Figure 4.
Absolute and relative changes in high-sensitivity cardiac troponin I concentration on serial testing in patients with myocardial injury and infarction. Violin-density and box-and-whisker plots illustrating the absolute and relative change in high-sensitivity cardiac troponin I concentration on serial testing in patients stratified by the adjudicated diagnosis: type 1 myocardial infarction (red), type 2 myocardial infarction (yellow), acute myocardial injury (blue), and chronic myocardial injury (gray).

References

    1. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40:237–269. doi: 10.1016/j.jacc.2018.08.1038
    1. Chapman AR, Adamson PD, Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Berry C, Findlay I, Cruikshank A, et al. ; High-STEACS Investigators. High-sensitivity cardiac troponin and the universal definition of myocardial infarction. Circulation. 2020;141:161–171. doi: 10.1161/CIRCULATIONAHA.119.042960
    1. Shah ASV, Sandoval Y, Noaman A, Sexter A, Vaswani A, Smith SW, Gibbins M, Griffiths M, Chapman AR, Strachan FE, et al. . Patient selection for high sensitivity cardiac troponin testing and diagnosis of myocardial infarction: prospective cohort study. BMJ. 2017;359:j4788. doi: 10.1136/bmj.j4788
    1. Mills NL, Lee KK, McAllister DA, Churchhouse AM, MacLeod M, Stoddart M, Walker S, Denvir MA, Fox KA, Newby DE. Implications of lowering threshold of plasma troponin concentration in diagnosis of myocardial infarction: cohort study. BMJ. 2012;344:e1533. doi: 10.1136/bmj.e1533
    1. Shah AS, McAllister DA, Mills R, Lee KK, Churchhouse AM, Fleming KM, Layden E, Anand A, Fersia O, Joshi NV, et al. . Sensitive troponin assay and the classification of myocardial infarction. Am J Med. 2015;128:493–501.e3. doi: 10.1016/j.amjmed.2014.10.056
    1. Sandoval Y, Jaffe AS. Type 2 myocardial infarction: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;73:1846–1860. doi: 10.1016/j.jacc.2019.02.018
    1. McCarthy CP, Vaduganathan M, Januzzi JL., Jr.Type 2 myocardial infarction: diagnosis, prognosis, and treatment. JAMA. 2018;320:433–434. doi: 10.1001/jama.2018.7125
    1. DeFilippis AP, Chapman AR, Mills NL, de Lemos JA, Arbab-Zadeh A, Newby LK, Morrow DA. Assessment and treatment of patients with type 2 myocardial infarction and acute nonischemic myocardial injury. Circulation. 2019;140:1661–1678. doi: 10.1161/CIRCULATIONAHA.119.040631
    1. Taggart C, Wereski R, Mills NL, Chapman AR. Diagnosis, investigation and management of patients with acute and chronic myocardial injury. J Clin Med. 2021;10:2331. doi: 10.3390/jcm10112331
    1. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Jr, Ganiats TG, Holmes DR, Jr, Jaffe AS, Jneid H, Kelly RF, Kontos MC, et al. ; ACC/AHA Task Force Members; Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:2354–2394. doi: 10.1161/CIR.0000000000000133
    1. Collet J-P, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, et al. . 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 20201–79. doi: 10.1093/eurheartj/ehaa575
    1. Chapman AR, Sandoval Y. Type 2 myocardial infarction: evolving approaches to diagnosis and risk-stratification. Clin Chem. 2021;67:61–69. doi: 10.1093/clinchem/hvaa189
    1. Boeddinghaus J, Twerenbold R, Nestelberger T, Koechlin L, Wussler D, Meier M, Troester V, Zimmermann T, Badertscher P, Wildi K, et al. ; APACE Investigators. Clinical use of a new high-sensitivity cardiac troponin I assay in patients with suspected myocardial infarction. Clin Chem. 2019;65:1426–1436. doi: 10.1373/clinchem.2019.304725
    1. Boeddinghaus J, Nestelberger T, Twerenbold R, Neumann JT, Lindahl B, Giannitsis E, Sörensen NA, Badertscher P, Jann JE, Wussler D, et al. ; APACE, BACC, and TRAPID-AMI Investigators. Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. Eur Heart J. 2018;39:3780–3794. doi: 10.1093/eurheartj/ehy514
    1. Boeddinghaus J, Reichlin T, Cullen L, Greenslade JH, Parsonage WA, Hammett C, Pickering JW, Hawkins T, Aldous S, Twerenbold R, et al. . Two-hour algorithm for triage toward rule-out and rule-in of acute myocardial infarction by use of high-sensitivity cardiac troponin I. Clin Chem. 2016;62:494–504. doi: 10.1373/clinchem.2015.249508
    1. Twerenbold R, Neumann JT, Sörensen NA, Ojeda F, Karakas M, Boeddinghaus J, Nestelberger T, Badertscher P, Rubini Giménez M, Puelacher C, et al. . Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. J Am Coll Cardiol. 2018;72:620–632. doi: 10.1016/j.jacc.2018.05.040
    1. Sandoval Y, Smith SW, Schulz K, Sexter A, Apple FS. Rapid identification of patients at high risk for acute myocardial infarction using a single high-sensitivity cardiac troponin I measurement. Clin Chem. 2020;66:620–622. doi: 10.1093/clinchem/hvaa045
    1. Cullen LA, Mills NL, Mahler S, Body R. Early rule-out and rule-in strategies for myocardial infarction. Clin Chem. 2017;63:129–139. doi: 10.1373/clinchem.2016.254730
    1. Felker GM, Mentz RJ, Teerlink JR, Voors AA, Pang PS, Ponikowski P, Greenberg BH, Filippatos G, Davison BA, Cotter G, et al. . Serial high sensitivity cardiac troponin T measurement in acute heart failure: insights from the RELAX-AHF study. Eur J Heart Fail. 2015;17:1262–1270. doi: 10.1002/ejhf.341
    1. Thelin J, Melander O. Dynamic high-sensitivity troponin elevations in atrial fibrillation patients might not be associated with significant coronary artery disease. BMC Cardiovasc Disord. 2017;17:169. doi: 10.1186/s12872-017-0601-7
    1. Chapman AR, Adamson PD, Mills NL. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart. 2017;103:10–18. doi: 10.1136/heartjnl-2016-309530
    1. Sandoval Y, Smith SW, Schulz KM, Murakami MM, Love SA, Nicholson J, Apple FS. Diagnosis of type 1 and type 2 myocardial infarction using a high-sensitivity cardiac troponin I assay with sex-specific 99th percentiles based on the third universal definition of myocardial infarction classification system. Clin Chem. 2015;61:657–663. doi: 10.1373/clinchem.2014.236638
    1. Sandoval Y, Smith SW, Sexter A, Schulz K, Apple FS. Use of objective evidence of myocardial ischemia to facilitate the diagnostic and prognostic distinction between type 2 myocardial infarction and myocardial injury. Eur Heart J Acute Cardiovasc Care. 2020;9:62–69. doi: 10.1177/2048872618787796
    1. Wereski R, Chapman AR, Lee KK, Smith SW, Lowe DJ, Gray A, Mills NL. High-sensitivity cardiac troponin concentrations at presentation in patients with ST-segment elevation myocardial infarction. JAMA Cardiol. 2020;5:1302–1304. doi: 10.1001/jamacardio.2020.2867
    1. Healthcare Improvment Scotland. Scottish Intercollegiate Guidelines Network (SIGN) 93: acute coronary syndrome national clinical guideline: SIGN guidelines. 2013. Accessed July 13, 2021.
    1. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, Caso P, Dudek D, Gielen S, Huber K, et al. ; ESC Committee for Practice Guidelines. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999–3054. doi: 10.1093/eurheartj/ehr236
    1. Bularga A, Lee KK, Stewart S, Ferry AV, Chapman AR, Marshall L, Strachan FE, Cruickshank A, Maguire D, Berry C, et al. . High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation. 2019;140:1557–1568. doi: 10.1161/CIRCULATIONAHA.119.042866
    1. Sandoval Y, Smith SW, Shah AS, Anand A, Chapman AR, Love SA, Schulz K, Cao J, Mills NL, Apple FS. Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin I measurement. Clin Chem. 2017;63:369–376. doi: 10.1373/clinchem.2016.264523
    1. Chin CW, Shah AS, McAllister DA, Joanna Cowell S, Alam S, Langrish JP, Strachan FE, Hunter AL, Maria Choy A, Lang CC, et al. . High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur Heart J. 2014;35:2312–2321. doi: 10.1093/eurheartj/ehu189
    1. Shah AS, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV, Cruikshank A, Reid A, Stoddart M, Strachan F, et al. . High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ. 2015;350:g7873. doi: 10.1136/bmj.g7873
    1. Than MP, Pickering JW, Sandoval Y, Shah ASV, Tsanas A, Apple FS, Blankenberg S, Cullen L, Mueller C, Neumann JT, et al. . Machine learning to predict the likelihood of acute myocardial infarction. Circulation. 2019899–909. doi: 10.1161/CIRCULATIONAHA.119.041980
    1. National Institute of Clinical Excellence. Acute coronary syndromes. NICE Guidelines. 2020. National Institute of Clinical Excellence; NG185.
    1. Apple FS, Collinson PO, Kavsak PA, Body R, Ordóñez-Llanos J, Saenger AK, Omland T, Hammarsten O, Jaffe ASIFCC Committee on Clinical Applications of Cardiac Bio-Markers. Getting cardiac troponin right: appraisal of the 2020 European Society of Cardiology guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-Segment elevation by the International Federation of Clinical Chemistry and Laboratory Medicine Committee on Clinical Applications of Cardiac Bio-Markers. Clin Chem. 2021;67:730–735. doi: 10.1093/clinchem/hvaa337
    1. Chapman AR, Anand A, Boeddinghaus J, Ferry AV, Sandeman D, Adamson PD, Andrews J, Tan S, Cheng SF, D’Souza M, et al. . Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation. 2017;135:1586–1596. doi: 10.1161/CIRCULATIONAHA.116.025021
    1. Haller PM, Boeddinghaus J, Neumann JT, Sörensen NA, Hartikainen TS, Goßling A, Nestelberger T, Twerenbold R, Lehmacher J, Keller T, et al. . Performance of the ESC 0/1-h and 0/3-h algorithm for the rapid identification of myocardial infarction without ST-elevation in patients with diabetes. Diabetes Care. 2020;43:460–467. doi: 10.2337/dc19-1327
    1. Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Puelacher C, Sabti Z, Rubini Gimenez M, Tschirky S, du Fay de Lavallaz J, et al. . 0/1-Hour triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation. 2018;137:436–451. doi: 10.1161/CIRCULATIONAHA.117.028901
    1. Twerenbold R, Costabel JP, Nestelberger T, Campos R, Wussler D, Arbucci R, Cortes M, Boeddinghaus J, Baumgartner B, Nickel CH, et al. . Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. J Am Coll Cardiol. 2019;74:483–494. doi: 10.1016/j.jacc.2019.05.046
    1. Pickering JW, Greenslade JH, Cullen L, Flaws D, Parsonage W, Aldous S, George P, Worster A, Kavsak PA, Than MP. Assessment of the European Society of Cardiology 0-hour/1-hour algorithm to rule-out and rule-in acute myocardial infarction. Circulation. 2016;134:1532–1541. doi: 10.1161/CIRCULATIONAHA.116.022677
    1. Anand A, Lee KK, Chapman AR, Ferry AV, Adamson PD, Strachan FE, Berry C, Findlay I, Cruikshank A, Reid A, et al. ; HiSTORIC Investigators. High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomized controlled trial. Circulation. 2021;143:2214–2224. doi: 10.1161/CIRCULATIONAHA.120.052380
    1. Chew DP, Lambrakis K, Blyth A, Seshadri A, Edmonds MJR, Briffa T, Cullen LA, Quinn S, Karnon J, Chuang A, et al. . A randomized trial of a 1-hour troponin t protocol in suspected acute coronary syndromes: the Rapid Assessment of Possible Acute Coronary Syndrome in the Emergency Department With High-Sensitivity Troponin T Study (RAPID-TnT). Circulation. 2019;140:1543–1556. doi: 10.1161/CIRCULATIONAHA.119.042891
    1. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, Sandeman D, Stables CL, Adamson PD, Andrews JPM, et al. ; High-STEACS Investigators. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet. 2018;392:919–928. doi: 10.1016/S0140-6736(18)31923-8
    1. Jaeger C, Wildi K, Twerenbold R, Reichlin T, Rubini Gimenez M, Neuhaus JD, Grimm K, Boeddinghaus J, Hillinger P, Nestelberger T, et al. . One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am Heart J. 2016;171:92–102.e1. doi: 10.1016/j.ahj.2015.07.022
    1. Chiang C-H, Chiang C-H, Gi W-T, Wu Y-K, Huang S-S, Yeo YH, Lee C-C. Safety and efficacy of the European Society of Cardiology 0/1-hour algorithm for diagnosis of myocardial infarction: systematic review and meta-analysis. Heart. 2020;106:985–991. doi: 10.1136/heartjnl-2019-316343
    1. Hartikainen TS, Sorensen NA, Haller PM, Goßling A, Lehmacher J, Zeller T, Blankenberg S, Westermann D, Neumann JT. Clinical application of the 4th Universal Definition of Myocardial Infarction. Eur Heart J. 2020;41:2209–2216. doi: 10.1093/eurheartj/ehaa035
    1. Sandoval Y, Thordsen SE, Smith SW, Schulz KM, Murakami MM, Pearce LA, Apple FS. Cardiac troponin changes to distinguish type 1 and type 2 myocardial infarction and 180-day mortality risk. Eur Heart J Acute Cardiovasc Care. 2014;3:317–325. doi: 10.1177/2048872614538411
    1. Neumann JT, Twerenbold R, Ojeda F, Sörensen NA, Chapman AR, Shah ASV, Anand A, Boeddinghaus J, Nestelberger T, Badertscher P, et al. . Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med. 2019;380:2529–2540. doi: 10.1056/NEJMoa1803377
    1. Body R, Carlton E, Sperrin M, Lewis PS, Burrows G, Carley S, McDowell G, Buchan I, Greaves K, Mackway-Jones K. Troponin-only Manchester Acute Coronary Syndromes (T-MACS) decision aid: single biomarker re-derivation and external validation in three cohorts. Emerg Med J. 2017;34:349–356. doi: 10.1136/emermed-2016-205983

Source: PubMed

3
Iratkozz fel