Effects of phthalic acid esters on the liver and thyroid

R H Hinton, F E Mitchell, A Mann, D Chescoe, S C Price, A Nunn, P Grasso, J W Bridges, R H Hinton, F E Mitchell, A Mann, D Chescoe, S C Price, A Nunn, P Grasso, J W Bridges

Abstract

The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fail to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. Straight chain analogs of di-2-ethylhexyl phthalate, di-n-hexyl phthalate and di-n-oxtyl phthalate differ entirely in their short-term effects on the liver and kidney but have similar effects on the thyroid. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. The nature of these changes is such as to increase storage of lipid in the liver. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors.

References

    1. Environ Health Perspect. 1982 Nov;45:41-50
    1. Carcinogenesis. 1982;3(10):1231-3
    1. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):797-815
    1. Atherosclerosis. 1983 Jan;46(1):105-16
    1. Atherosclerosis. 1983 Feb;46(2):239-46
    1. Biochem Pharmacol. 1983 Sep 15;32(18):2733-8
    1. Biochim Biophys Acta. 1983 Oct 18;760(2):283-92
    1. Toxicology. 1983 Sep;28(1-2):167-79
    1. Crit Rev Toxicol. 1983;12(1):1-58
    1. Food Chem Toxicol. 1984 Feb;22(2):151-5
    1. J Toxicol Environ Health. 1983 Oct-Dec;12(4-6):623-32
    1. Toxicol Appl Pharmacol. 1984 Apr;73(2):243-9
    1. Toxicol Appl Pharmacol. 1985 Jan;77(1):116-32
    1. Biochem Pharmacol. 1985 May 1;34(9):1357-62
    1. Toxicol Appl Pharmacol. 1985 Jul;79(3):365-76
    1. Toxicol Appl Pharmacol. 1985 Dec;81(3 Pt 1):371-92
    1. Biochem Pharmacol. 1986 Sep 1;35(17):2941-7
    1. Toxicology. 1986 Oct;41(2):169-91
    1. AMA Arch Ind Hyg Occup Med. 1953 Sep;8(3):219-26
    1. Nature. 1962 Jun 9;194:948-9
    1. J Biol Chem. 1964 Jul;239:2370-8
    1. Biochem J. 1956 Feb;62(2):315-23
    1. Biochem J. 1959 Dec;73:623-8
    1. Biochem J. 1959 Dec;73:628-37
    1. Am J Pathol. 1977 Oct;89(1):119-36
    1. J Cell Biol. 1968 Apr;37(1):27-46
    1. Biochem Pharmacol. 1968 Jun;17(6):1049-65
    1. Biochem J. 1968 Aug;109(1):127-35
    1. J Clin Invest. 1970 Jun;49(6):1266-79
    1. Int Rev Cytol. 1969;25:201-77
    1. Anal Biochem. 1972 Jul;48(1):247-58
    1. Hoppe Seylers Z Physiol Chem. 1972 Jul;353(7):1171-7
    1. Biochem Biophys Res Commun. 1973 Oct 1;54(3):968-75
    1. Ann N Y Acad Sci. 1973 Nov 26;226:333-40
    1. Exp Cell Res. 1971 Dec;69(2):249-58
    1. J Chromatogr. 1974 Jul 17;94(0):209-18
    1. Endocrinology. 1974 Oct;95(4):1150-5
    1. Toxicol Appl Pharmacol. 1975 May;32(2):355-67
    1. Hoppe Seylers Z Physiol Chem. 1976 Apr;357(4):573-84
    1. CRC Crit Rev Toxicol. 1976 Oct;4(4):353-94
    1. Toxicology. 1976 Nov-Dec;6(3):341-56
    1. Toxicol Appl Pharmacol. 1977 Feb;39(2):239-48
    1. Food Cosmet Toxicol. 1977 Feb;15(1):17-21
    1. Toxicology. 1977 Jun;7(3):307-26
    1. Annu Rev Biochem. 1977;46:263-98
    1. Environ Health Perspect. 1977 Dec;21:7-16
    1. Toxicology. 1978 Feb;9(1-2):109-23
    1. J Biochem. 1978 May;83(5):1361-5
    1. Methods Enzymol. 1978;52:318-24
    1. Toxicol Appl Pharmacol. 1978 Aug;45(2):497-504
    1. Biochem Pharmacol. 1978;27(19):2283-8
    1. Arch Int Pharmacodyn Ther. 1978 Oct;235(2):187-95
    1. Cancer Res. 1979 Sep;39(9):3419-28
    1. Nature. 1980 Jan 24;283(5745):397-8
    1. Biochim Biophys Acta. 1980 Jan 18;617(1):1-11
    1. Biochem J. 1980 Jan 15;186(1):369-71
    1. Endocrinology. 1981 Jun;108(6):2098-102
    1. Arch Environ Contam Toxicol. 1981;10(3):271-80
    1. Bull Environ Contam Toxicol. 1981 Jun;26(6):764-8
    1. Biochem J. 1981 Apr 15;196(1):11-6
    1. Food Cosmet Toxicol. 1981 Oct;19(5):585-605
    1. Cancer Res. 1982 Jan;42(1):259-66
    1. Biochem J. 1981 Jul 15;198(1):177-86
    1. Am J Clin Nutr. 1982 Jul;36(1):24-31
    1. Biochem J. 1982 Apr 1;203(1):161-8
    1. Toxicology. 1982;23(4):309-19
    1. Arch Neurol. 1982 Dec;39(12):744-9

Source: PubMed

3
Iratkozz fel