Kinetics of microbial translocation markers in patients on efavirenz or lopinavir/r based antiretroviral therapy

Jan Vesterbacka, Piotr Nowak, Babilonia Barqasho, Samir Abdurahman, Jessica Nyström, Staffan Nilsson, Hiroyuki Funaoka, Tatsuo Kanda, Lars-Magnus Andersson, Magnus Gisslèn, Anders Sönnerborg, Jan Vesterbacka, Piotr Nowak, Babilonia Barqasho, Samir Abdurahman, Jessica Nyström, Staffan Nilsson, Hiroyuki Funaoka, Tatsuo Kanda, Lars-Magnus Andersson, Magnus Gisslèn, Anders Sönnerborg

Abstract

Objectives: We investigated whether there are differences in the effects on microbial translocation (MT) and enterocyte damage by different antiretroviral therapy (ART) regimens after 1.5 years and whether antibiotic use has impact on MT. In a randomized clinical trial (NCT01445223) on first line ART, patients started either lopinavir/r (LPV/r) (n = 34) or efavirenz (EFV) containing ART (n = 37). Lipopolysaccharide (LPS), sCD14, anti-flagellin antibodies and intestinal fatty acid binding protein (I-FABP) levels were determined in plasma at baseline (BL) and week 72 (w72).

Results: The levels of LPS and sCD14 were reduced from BL to w72 (157.5 pg/ml vs. 140.0 pg/ml, p = 0.0003; 3.13 ug/ml vs. 2.85 ug/ml, p = 0.005, respectively). The levels of anti-flagellin antibodies had decreased at w72 (0.35 vs 0.31 [OD]; p<0.0004), although significantly only in the LPV/r arm. I-FABP levels increased at w72 (2.26 ng/ml vs 3.13 ng/ml; p<0.0001), although significantly in EFV treated patients only. Patients given antibiotics at BL had lower sCD14 levels at w72 as revealed by ANCOVA compared to those who did not receive (Δ = -0.47 µg/ml; p = 0.015).

Conclusions: Markers of MT and enterocyte damage are elevated in untreated HIV-1 infected patients. Long-term ART reduces the levels, except for I-FABP which role as a marker of MT is questionable in ART-experienced patients. Why the enterocyte damage seems to persist remains to be established. Also antibiotic usage may influence the kinetics of the markers of MT.

Trial registration: ClinicalTrials.gov NCT01445223.

Conflict of interest statement

Competing Interests: The authors do not have a commercial or other association that might pose a conflict of interest with the exception of Dr HF is employed by DS Pharma Biomedical Co., Ltd, the company that developed a kit for I-FABP. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Trial profile and reasons for…
Figure 1. Trial profile and reasons for discontinuations in each group.
Figure 2. Levels of LPS.
Figure 2. Levels of LPS.
Levels of LPS were significantly reduced after 72 weeks of antiretroviral therapy in the whole cohort, with a unified pattern in both treatment arms. Data are shown as individual values with corresponding baseline LPS levels at X-axis and week 72 levels at Y-axis, respectively. Individuals treated with lopinavir (LPV/r) are indicated with shaded and efavirenz (EFV) with black circles. Dotted lines refer to median values at the corresponding time-point.
Figure 3. Levels of sCD14.
Figure 3. Levels of sCD14.
Levels of sCD14 were significantly reduced after 72 weeks of antiretroviral therapy in the whole group, with a unified pattern in both treatment arms. Data are shown as individual values with corresponding baseline sCD14 levels at X-axis and week 72 levels at Y-axis, respectively. Individuals treated with lopinavir (LPV/r) are indicated with shaded and efavirenz (EFV) with black circles. Dotted lines refer to median values at the corresponding time-point.
Figure 4. Correlations between sCD14, CD4+ T-cells…
Figure 4. Correlations between sCD14, CD4+ T-cells and HIV-1 RNA.
At baseline, significant correlations were found between sCD14 and CD4-T cell counts (A) or HIV-1 RNA viral load (B), respectively. Rho and p-value refer to Spearman’s rank test.
Figure 5. Levels of Intestinal Fatty Acid…
Figure 5. Levels of Intestinal Fatty Acid Binding Protein (I-FABP).
Plasma levels of I-FABP were significantly elevated after 72 weeks of antiretroviral treatment as compared to baseline in the whole cohort. Stratified to treatment arms, efavirenz (EFV) treated patients had significantly increased levels, but not the patients on lopinavir/r (LPV/r) therapy. Data are shown as individual values with corresponding baseline I-FABP levels at X-axis and week 72 levels at Y-axis, respectively. Individuals treated with lopinavir (LPV/r) are indicated with shaded and efavirenz (EFV) with black circles. Dotted lines refer to median values at the corresponding time-point.
Figure 6. Plasma levels of anti-flagellin antibodies.
Figure 6. Plasma levels of anti-flagellin antibodies.
A significant reduction of anti-flagellin IgG levels was seen after 72 weeks of antiretroviral treatment compared to baseline in the whole cohort. Plasma levels of anti-flagellin IgG decreased significantly in lopinavir/r (LPV/r) treated patients, but not during efavirenz (EFV) therapy. Data are shown as individual values with corresponding baseline anti-flagellin IgG levels at X-axis and week 72 levels at Y-axis, respectively. Individuals treated with lopinavir (LPV/r) are indicated with shaded and efavirenz (EFV) with black circles. Dotted lines refer to median values at the corresponding time-point.
Figure 7. Change (Δ) in sCD14 levels…
Figure 7. Change (Δ) in sCD14 levels in relation to antibiotics.
Change (Δ) in sCD14 levels between baseline (BL) and 72 weeks of treatment (w72). Patients treated with antibiotics at BL had a larger reduction in sCD14 levels at w72 than those who did not receive antibiotics at BL. P-value refers to Mann-Whitney test.

References

    1. Shen L, Siliciano RF (2008) Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J Allergy Clin Immunol 122: 22–28.
    1. Karlsson AC, Gaines H, Sallberg M, Lindback S, Sonnerborg A (1999) Reappearance of founder virus sequence in human immunodeficiency virus type 1-infected patients. J Virol 73: 6191–6196.
    1. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 105: 3879–3884.
    1. Lindkvist A, Eden A, Norstrom MM, Gonzalez VD, Nilsson S, et al. (2009) Reduction of the HIV-1 reservoir in resting CD4+ T-lymphocytes by high dosage intravenous immunoglobulin treatment: a proof-of-concept study. AIDS Res Ther 6: 15.
    1. Troseid M, Nowak P, Nystrom J, Lindkvist A, Abdurahman S, et al. (2010) Elevated plasma levels of lipopolysaccharide and high mobility group box-1 protein are associated with high viral load in HIV-1 infection: reduction by 2-year antiretroviral therapy. AIDS 24: 1733–1737.
    1. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12: 1365–1371.
    1. Martinez E, Larrousse M, Gatell JM (2009) Cardiovascular disease and HIV infection: host, virus, or drugs? Curr Opin Infect Dis 22: 28–34.
    1. Boccara F (2008) Cardiovascular complications and atherosclerotic manifestations in the HIV-infected population: type, incidence and associated risk factors. AIDS 22 Suppl 3S19–26.
    1. Eden A, Price RW, Spudich S, Fuchs D, Hagberg L, et al. (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196: 1779–1783.
    1. Lichtfuss GF, Hoy J, Rajasuriar R, Kramski M, Crowe SM, et al. (2011) Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection. Biomark Med 5: 171–186.
    1. Abdurahman S, Barqasho B, Nowak P, Cuong DD, Amogne W, et al. (2011) Elevated Flagellin-specific Antibodies during HIV-1 Infection. Abstract CROI 2011.
    1. Pelsers MM, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, et al. (2003) Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem 36: 529–535.
    1. Sandler NG, Wand H, Roque A, Law M, Nason MC, et al. (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 203: 780–790.
    1. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, et al. (2010) Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis 202: 1553–1561.
    1. Chege D, Sheth PM, Kain T, Kim CJ, Kovacs C, et al. (2011) Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS 25: 741–749.
    1. Bonora S, Nicastri E, Calcagno A, Gonzalez de Requena D, D’Ettorre G, et al. (2009) Ultrasensitive assessment of residual HIV viraemia in HAART-treated patients with persistently undetectable plasma HIV-RNA: a cross-sectional evaluation. J Med Virol 81: 400–405.
    1. Josephson F, Andersson MC, Flamholc L, Gisslen M, Hagberg L, et al. (2010) The relation between treatment outcome and efavirenz, atazanavir or lopinavir exposure in the NORTHIV trial of treatment-naive HIV-1 infected patients. Eur J Clin Pharmacol 66: 349–357.
    1. Eden A, Andersson LM, Andersson O, Flamholc L, Josephson F, et al. (2010) Differential effects of efavirenz, lopinavir/r, and atazanavir/r on the initial viral decay rate in treatment naive HIV-1-infected patients. AIDS Res Hum Retroviruses 26: 533–540.
    1. Funaoka H, Kanda T, Kajiura S, Ohkaru Y, Fujii H (2011) Development of a high-specificity sandwich ELISA system for the quantification of human intestinal fatty acid-binding protein (I-FABP) concentrations. Immunol Invest 40: 223–242.
    1. Nowak P, Abdurahman S, Lindkvist A, Troseid M, Sonnerborg A (2012) Impact of HMGB1/TLR Ligand Complexes on HIV-1 Replication: Possible Role for Flagellin during HIV-1 Infection. Int J Microbiol 2012: 263836.
    1. Mizel SB, Bates JT (2010) Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 185: 5677–5682.
    1. Cassol E, Malfeld S, Mahasha P, van der Merwe S, Cassol S, et al. (2010) Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis 202: 723–733.
    1. Wallet MA, Rodriguez CA, Yin L, Saporta S, Chinratanapisit S, et al. (2010) Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS 24: 1281–1290.
    1. Merlini E, Bai F, Bellistri GM, Tincati C, d’Arminio Monforte A, et al. (2011) Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS One 6: e18580.
    1. Marchetti G, Merlini E, Sinigaglia E, Iannotti N, Bai F, et al. (2012) Immune Reconstitution in HIV+ Subjects on Lopinavir/Ritonavir-Based HAART According to the Severity of Pre-Therapy CD4+. Curr HIV Res.
    1. Rajasuriar R, Booth D, Solomon A, Chua K, Spelman T, et al. (2010) Biological determinants of immune reconstitution in HIV-infected patients receiving antiretroviral therapy: the role of interleukin 7 and interleukin 7 receptor alpha and microbial translocation. J Infect Dis 202: 1254–1264.
    1. Marchetti G, Cozzi-Lepri A, Merlini E, Bellistri GM, Castagna A, et al. (2011) Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count. AIDS 25: 1385–1394.
    1. Douek DC, Roederer M, Koup RA (2009) Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60: 471–484.
    1. Anas A, van der Poll T, de Vos AF (2010) Role of CD14 in lung inflammation and infection. Crit Care 14: 209.
    1. Ayaslioglu E, Kalpaklioglu F, Kavut AB, Erturk A, Capan N, et al. (2012) The role of CD14 gene promoter polymorphism in tuberculosis susceptibility. J Microbiol Immunol Infect.
    1. Kanda T, Tsukahara A, Ueki K, Sakai Y, Tani T, et al. (2011) Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: a multicenter, observer-blinded validation study. J Gastroenterol 46: 492–500.
    1. Palmisano L, Giuliano M, Nicastri E, Pirillo MF, Andreotti M, et al. (2005) Residual viraemia in subjects with chronic HIV infection and viral load <50 copies/ml: the impact of highly active antiretroviral therapy. AIDS 19: 1843–1847.
    1. Nicastri E, Palmisano L, Sarmati L, D’Ettorre G, Parisi S, et al. (2008) HIV-1 residual viremia and proviral DNA in patients with suppressed plasma viral load (<400 HIV-RNA cp/ml) during different antiretroviral regimens. Curr HIV Res 6: 261–266.
    1. Derikx JP, Vreugdenhil AC, Van den Neucker AM, Grootjans J, van Bijnen AA, et al. (2009) A pilot study on the noninvasive evaluation of intestinal damage in celiac disease using I-FABP and L-FABP. J Clin Gastroenterol 43: 727–733.
    1. Wiercinska-Drapalo A, Jaroszewicz J, Siwak E, Pogorzelska J, Prokopowicz D (2008) Intestinal fatty acid binding protein (I-FABP) as a possible biomarker of ileitis in patients with ulcerative colitis. Regul Pept 147: 25–28.
    1. Pilon AA, Lum JJ, Sanchez-Dardon J, Phenix BN, Douglas R, et al. (2002) Induction of apoptosis by a nonnucleoside human immunodeficiency virus type 1 reverse transcriptase inhibitor. Antimicrob Agents Chemother 46: 2687–2691.
    1. Blas-Garcia A, Esplugues JV, Apostolova N (2011) Twenty years of HIV-1 non-nucleoside reverse transcriptase inhibitors: time to reevaluate their toxicity. Curr Med Chem 18: 2186–2195.
    1. Rizza SA, Badley AD (2008) HIV protease inhibitors impact on apoptosis. Med Chem 4: 75–79.
    1. Badley AD (2005) In vitro and in vivo effects of HIV protease inhibitors on apoptosis. Cell Death Differ 12 Suppl 1924–931.
    1. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, et al. (2004) Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113: 1296–1306.
    1. Lien E, Aukrust P, Sundan A, Muller F, Froland SS, et al. (1998) Elevated levels of serum-soluble CD14 in human immunodeficiency virus type 1 (HIV-1) infection: correlation to disease progression and clinical events. Blood 92: 2084–2092.
    1. Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, et al. (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5: e9836.
    1. Jernberg C, Lofmark S, Edlund C, Jansson JK (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156: 3216–3223.
    1. Mermin J, Lule J, Ekwaru JP, Malamba S, Downing R, et al. (2004) Effect of co-trimoxazole prophylaxis on morbidity, mortality, CD4-cell count, and viral load in HIV infection in rural Uganda. Lancet 364: 1428–1434.
    1. Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, et al. (2011) Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One 6: e18688.
    1. Kalambokis GN, Tsianos EV (2012) Rifaximin reduces endotoxemia and improves liver function and disease severity in patients with decompensated cirrhosis. Hepatology 55: 655–656.

Source: PubMed

3
Iratkozz fel