Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse

Katja Maria Bangsgaard Bendtsen, Lukasz Krych, Dorte Bratbo Sørensen, Wanyong Pang, Dennis Sandris Nielsen, Knud Josefsen, Lars H Hansen, Søren J Sørensen, Axel Kornerup Hansen, Katja Maria Bangsgaard Bendtsen, Lukasz Krych, Dorte Bratbo Sørensen, Wanyong Pang, Dennis Sandris Nielsen, Knud Josefsen, Lars H Hansen, Søren J Sørensen, Axel Kornerup Hansen

Abstract

Stress has profound influence on the gastro-intestinal tract, the immune system and the behavior of the animal. In this study, the correlation between gut microbiota composition determined by Denaturing Grade Gel Electrophoresis (DGGE) and tag-encoded 16S rRNA gene amplicon pyrosequencing (454/FLX) and behavior in the Tripletest (Elevated Plus Maze, Light/Dark Box, and Open Field combined), the Tail Suspension Test, and Burrowing in 28 female BALB/c mice exposed to two weeks of grid floor induced stress was investigated. Cytokine and glucose levels were measured at baseline, during and after exposure to grid floor. Stressing the mice clearly changed the cecal microbiota as determined by both DGGE and pyrosequencing. Odoribacter, Alistipes and an unclassified genus from the Coriobacteriaceae family increased significantly in the grid floor housed mice. Compared to baseline, the mice exposed to grid floor housing changed the amount of time spent in the Elevated Plus Maze, in the Light/Dark Box, and burrowing behavior. The grid floor housed mice had significantly longer immobility duration in the Tail Suspension Test and increased their number of immobility episodes from baseline. Significant correlations were found between GM composition and IL-1α, IFN-γ, closed arm entries of Elevated Plus Maze, total time in Elevated Plus Maze, time spent in Light/Dark Box, and time spent in the inner zone of the Open Field as well as total time in the Open Field. Significant correlations were found to the levels of Firmicutes, e.g. various species of Ruminococccaceae and Lachnospiraceae. No significant difference was found for the evaluated cytokines, except an overall decrease in levels from baseline to end. A significant lower level of blood glucose was found in the grid floor housed mice, whereas the HbA1c level was significantly higher. It is concluded that grid floor housing changes the GM composition, which seems to influence certain anxiety-related parameters.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Blood glucose measurements during the…
Figure 1. Blood glucose measurements during the study.
For both groups measurements were taken at baseline, on day −5, +2, +9 of grid floor exposure for the test group and at the end of the study (mmol/L, mean and SD).
Figure 2. GM composition.
Figure 2. GM composition.
(Blue: control mice, Red: grid floor housed mice). A. DGGE-profile cluster analysis similarity tree from end fecal samples. The mice clustered strongly after gel (green, yellow and purple lines) and after cage allocation (rounded squares). There was no clear clustering according to housing. Overall similarity was 59.61%±4.68. B. DGGE-profile cluster analysis similarity tree from end cecal samples. The mice clustered according to housing (circles) independent of gel (green and yellow) and cage allocation (rounded squares). The overall similarity was 64.07%±5.64. C. Scatter plot of the y-component of similarity-based cecal PCA-plot (mean and SD). Difference between control mice (−107563±108957) and grid floor housed mice (107563±84155) is significant (p<0.01).
Figure 3. 16S rRNA gene 454/FLX based…
Figure 3. 16S rRNA gene 454/FLX based pyrosequencing of cecal content.
(Blue: control mice, Red: grid floor housed mice). A. Jackknifed replicate PCA plot. The plot is based on the phylogenetic distance matrix showing clustering of mice according to the floor type. B. Whisker plot of the 2nd principal component values. The significant difference between the two groups observed in the DGGE-based PCA-plot is confirmed (p<0.01***).
Figure 4. Time spent in each of…
Figure 4. Time spent in each of the three Tripletest compartments and risk assessments.
No significant differences were observed between control mice and grid floor housed mice in the overall time spent in the three compartments. Some significant changes were observed within each group. ”IZ”: time spent in IZ of total test time, “DC”: time spent in DC of total test time, “Entries CA”: number of entries into CA from OF, LDB or CA, “RAOA”: risk assessment OA, “RAOF”: risk assessment OF. “OF/total test time”: time spent in Open Field of total test time, “EPM”/total test time”: time spent in Elevated Plus Maze of total test time, “LDC/total test time”: time spent in Light (LC) or Dark Compartment (DC) of total test time, “RAOA, RAL, RAOF”: time spent risk assessing Open Arms, Light Compartment and Open Field, respectively.
Figure 5. Burrowing.
Figure 5. Burrowing.
Scatter plots of amount for control mice (A) and mice housed on grid floor (B) (g, mean and SD). No significant difference was found between the groups. Within the groups, there was a significant difference from baseline to end, which differed between the groups with a mean of 10.77 g removed wood chips for the control mice (p<0.05) compared to 19.64 g for grid floor housed mice (p<0.01).
Figure 6. TST results.
Figure 6. TST results.
End results from three mice were not obtained, as they learned to master tail climbing. A. End results for immobility duration for control mice and grid floor housed mice. There was a significant difference between the groups in total duration of immobility (p<0.05) (s, mean and SD). B. Within-group comparison from baseline to end of grid floor housed mice. There was a significant increase in the number of immobility episodes (p<0.05) (number of episodes, mean and SD).
Figure 7. Overview of Tripletest construction.
Figure 7. Overview of Tripletest construction.
The Open Field is connected to the closed arm of the Elevated Plus Maze with a 7×7 cm opening and a similar passage connects the other closed arm of the Elevated Plus Maze to the Light/Dark Box. The whole system is elevated 45 cm from the floor.

References

    1. Vael C, Desager K (2010) The importance of the development of the intestinal microbiota in infancy. Curr Opin in Pediatr 21 6: 794–800.
    1. Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 8: 435–54.
    1. Elenkov IJ, Chrousos GP (1999) Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory Cytokines and Susceptibility to Disease. Trends Endocrin Met 10 9: 359–368.
    1. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136 6: 2003–2014.
    1. Neufeld KA, Foster JA (2009) Effects of gut microbiota on the brain: implications for psychiatry. J Psychiatr Neurosci 34 3: 230–31.
    1. Caso JR, Leza JC, Menchen L (2008) The effects of physical and psychological stress on the gastrointestinal tract: Lessons from animal models. Curr Mol Med 8 4: 299–312.
    1. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, et al. (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 25 3: 397–407.
    1. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, et al. (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558 1: 263–275.
    1. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res 43 2: 164–174.
    1. O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A, et al. (2009) Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biol Psychiatr 65 3: 223–26.
    1. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, et al. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108 38: 16050–16055.
    1. Dantzer R (2009) Cytokines, sickness behavior, and depression. Immunol Allergy Clin 29 2: 247–264.
    1. Schiepers OJG, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuro-Psychoph 29 2: 201–217.
    1. Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21 2: 153–160.
    1. Parkin J, Cohen B (2001) An overview of the immune system. The Lancet 357: 1777–1789.
    1. Monteleone I, Pallone F, Monteleone G (2009) Interleukin-23 and Th17 cells in the Control of Gut Inflammation. Mediat Inflamm 2009: 1–7.
    1. Palanza P (2001) Animal models of anxiety and depression: how are females different? Neurosci Biobehav R 25 3: 219–233.
    1. Krohn TC, Hansen AK, Dragsted N (2003) Telemetry as a method for measuring the impact of housing conditions on rats' welfare. Anim Welfare 12 1: 53–62.
    1. Krohn TC, Hansen AK, Dragsted N (2003) Telemetry as a method for measuring impacts of housing conditions on rats. Animal Welfare 12: 53–62.
    1. Sorensen DB, Stub C, Jegstrup IM, Ritskes-Hoitinga M, Hansen AK (2005) Fluctuating asymmetry in relation to stress and social status in inbred male Lewis rats. Scandinavian Journal of Laboratory Animal Science 32: 117–123.
    1. Stub C, Sorensen DB, Jegstrup IM, Ritskes-Hoitinga M, Hansen AK (2002) Fluctuating asymmetry of teeth is not a reliable indicator for assessing stress in rats. Scandinavian Journal of Laboratory Animal Science 29: 149–153.
    1. Husum H, Termeer E, Mathe AA, Bolwig TG, Ellenbroek BA (2002) Early maternal deprivation alters hippocampal levels of neuropeptide Y and calcitonin-gene related peptide in adult rats. Neuropharmacology 42: 798–806.
    1. Weiss IC, Feldon J, Domeney AM (1999) Isolation rearing-induced disruption of prepulse inhibition: further evidence for fragility of the response. Behavioural Pharmacology 10: 139–149.
    1. Solberg LC, Valdar W, Gauguier D, Nunez G, Taylor A, et al. (2006) A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17 2: 129–146.
    1. Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Be 54 1: 21–30.
    1. Bergner CL, Smolinsky AN, Hart PC, Dufour BD, Egan EJ, et al. (2006) Mouse models for studying depression-like states and antidepressant drugs. Methods Mol Biol 602: 267–282.
    1. Deacon RMJ (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1 1: 118–121.
    1. Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK (2010) Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comparative Med 60 5: 1–7.
    1. Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK (2010) Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Lab Anim 44: 283–289.
    1. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of Complex Microbial-Populations by Denaturing Gradient Gel-Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16s Ribosomal-Rna. Appl Environ Microb 59 3: 695–700.
    1. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, et al. (2011) 28 Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141: 1782–1791.
    1. Salonen A, de Vos WM, Palva A (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156: 3205–3215.
    1. Chang L (2011) The role of stress on physiologic responses and clinical symptoms in irritable bowel syndrome. Gastroenterology 140: 761–765.
    1. Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21: 801–810.
    1. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23: 255–64.
    1. Neufeld KA, Kang N, Bienenstock J, Foster JA (2011) Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 4: 492–494.
    1. Hansen CHF, Nielsen DS, Kverka M, Zakostelka Z, Klimesova K, et al.. (2012) Customizing laboratory mice by modifying gut microbiota and immune system development in the early postnatal period. PLoS One (In Press).
    1. Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, et al.. (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in non-obese diabetic (NOD) mice. Diabetologia (In Press).
    1. Fraser LM, Brown RE, Hussin A, Fontana M, Whittaker A, et al. (2010) Measuring anxiety- and locomotion-related behaviors in mice: a new way of using old tests. Psychopharmacology 211 1: 99–112.
    1. Ramos A, Pereira E, Martins GC, Wehrmeister TD, Izidio GS (2008) Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav Brain Res 193 2: 277–288.
    1. Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463 1–3: 55–65.
    1. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463 1–3: 3–33.
    1. Martinez I, Wallace G, Zhang C, Legge R, Benson AK, et al. (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75: 4175–4184.
    1. Matthies A, Clavel T, Gutschow M, Engst W, Haller D, et al. (2008) Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 74: 4847–4852.
    1. Chang YC, Nair MG, Nitiss JL (1995) Metabolites of daidzein and genistein and their biological activities. J Nat Prod 58: 1901–1905.
    1. Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, et al. (2002) Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 25: 1709–1714.
    1. Sim YB, Park SH, Kang YJ (2010) The Regulation of Blood Glucose Level in Physical and Emotional Stress Models: Possible Involvement of Adrenergic and Glucocorticoid Systems. Ach Pharm Res 33 10: 1679–1683.
    1. Martí O, Martí J, Armario A (1994) Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure. Physiol Behav: 747–53.
    1. Nagai F, Morotomi M, Watanabe Y, Sakon H, Tanaka R (2010) Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int J Syst Evol Microbiol 60: 1296–1302.
    1. Wolin MJ, Miller TL, Collins MD, Lawson PA (2003) Formate-Dependent Growth and Homoacetogenic Fermentation by a Bacterium from Human Feces: Description of Bryantella formatexigens gen. nov., sp. nov. Appl Environ Microbiol 69: 6321–6326.
    1. Wolin MJ, Miller TL, Lawson PA (2008) Proposal to replace the illegitimate genus name Bryantella Wolin, et al. 2004VP with the genus name Marvinbryantia gen. nov. and to replace the illegitimate combination Bryantella formatexigens Wolin, et al. 2004VP with Marvinbryantia formatexigens comb. nov. Int J Syst Evol Microbiol 58: 742–744.
    1. Pang W, Vogensen FK, Nielsen DS, Hansen AK (2011) Faecal and caecal microbiota profiles are not representative for each other in mice. Lab Anim (In press).
    1. Pruett SB (2001) Quantitative aspects of stress-induced immunomodulation. Immunopharmacology 1 3: 507–520.
    1. Arumugam M, Raes J, Pelletier E, Le PD, Yamada T, et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180.
    1. Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, et al. (2012) Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol-Gastr L 302: G168–G175.
    1. Ritskes-Hoitinga M (2006) Nutrition of Laboratory Mice. In: Hedrich H, editor. The Laboratory Mouse. Italy: Elsevier. 465–479.
    1. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans ADL, et al. (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Micr 68 7: 3401–7.
    1. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, et al. (2009) High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology 137; 1716–1724.
    1. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102: 11070–5.
    1. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, et al. (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120: 4332–4341.
    1. Walk ST, Blum AM, Ewing SAS, Weinstock JV, Young VB (2010) Alteration of the Murine Gut Microbiota During Infection with the Parasitic Helminth Heligmosomoides polygyrus. Inflam Bowel Dis 16: 1841–9.
    1. Wilson KH, Brown RS, Andersen GL, Tsang J, Sartor B (2006) Comparison of fecal biota from specific pathogen free and feral mice. Anaerobe 12: 249–253.
    1. Ripoll N, David DJP, Dailly E, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143 2: 193–200.
    1. Bleich A, Hansen AK (2012) Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 35 2: 81–92.
    1. Hansen AK, Baumans V, Elliott H, Francis R, Holgate B, et al. (2002) Future principles for housing and care of laboratory rodents and rabbits. Report for the revision of the Council of Europe Convention ETS 123 appendix A for rodents and rabbits. PART A. In: Council of Europe 2002, Strasbourg. .
    1. Deacon RMJ (2009) Burrowing: A sensitive behavioural assay, tested in five species of laboratory rodents. Behav Brain Res 200 1: 128–133.
    1. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. The Human Microbiome Consortium.
    1. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, et al.. (2009) PyNAST: a flexible tool for aligning sequences to a template alignment. Bateman A., associate editor. Advance Access Publication 2009.

Source: PubMed

3
Iratkozz fel