Inhaled β-agonist does not modify sympathetic activity in patients with COPD

Helge Haarmann, Cordula Mohrlang, Uta Tschiesner, David B Rubin, Thore Bornemann, Karin Rüter, Slavtcho Bonev, Tobias Raupach, Gerd Hasenfuß, Stefan Andreas, Helge Haarmann, Cordula Mohrlang, Uta Tschiesner, David B Rubin, Thore Bornemann, Karin Rüter, Slavtcho Bonev, Tobias Raupach, Gerd Hasenfuß, Stefan Andreas

Abstract

Background: Neurohumoral activation is present in COPD and might provide a link between pulmonary and systemic effects, especially cardiovascular disease. Because long acting inhaled β-agonists reduce hyperinflation, they could reduce sympathoexcitation by improving the inflation reflex. We aimed to evaluate if inhaled therapy with salmeterol reduces muscle sympathetic nerve activity (MSNA) evaluated by microneurography.

Methods: MSNA, heart rate, blood pressure, and respiration were continually measured. After baseline recording of 20 minutes, placebo was administered; after further 45 minutes salmeterol (50 μg) was administered which was followed by a further 45 minutes of data recording. Additionally, lung function, plasma catecholamine levels, arterial pulse wave velocity, heart rate variability, and baroreflex sensitivity were evaluated. Following 4 weeks of treatment with salmeterol 50 μg twice daily, measurements were repeated without placebo administration.

Results: A total of 32 COPD patients were included. Valid MSNA signals were obtained from 18 patients. Change in MSNA (bursts/100 heart beats) following acute administration of salmeterol did not differ significantly from the change following placebo (-1.96 ± 9.81 vs. -0.65 ± 9.07; p = 0.51) although hyperinflation was significantly reduced. Likewise, no changes in MSNA or catecholamines were observed after 4 weeks. Heart rate increased significantly by 3.8 ± 4.2 (p < 0.01) acutely and 3.9 ± 4.3 bpm (p < 0.01) after 4 weeks. Salmeterol treatment was safe and well tolerated.

Conclusions: By using microneurography as a gold standard to evaluate sympathetic activity we found no change in MSNA following salmeterol inhalation. Thus, despite an attenuation of hyperinflation, the long acting β-agonist salmeterol does not appear to reduce nor incite sympathoexcitation.

Trial registration: This study was registered with the European Clinical Trials Database (EudraCT No. 2011-001581-18) and ClinicalTrials.gov ( NCT01536587 ).

Figures

Figure 1
Figure 1
Effects of salmeterol on MSNA, heart rate, systolic and diastolic blood pressure. Displayed are means ± SD. SBP = systolic blood pressure; DBP = diastolic blood pressure. * = significant changes in paired t-test (p < 0.05). For further information see results and Table 2.
Figure 2
Figure 2
Scatter plot of change in norepinephrine against change in MSNA. Displayed are changes from visit 1 (week 0) to after salmeterol inhalation at visit 2 (week 4). (r = 0.72; p = 0.01; n = 11).

References

    1. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379(9823):1341–51. doi: 10.1016/S0140-6736(11)60968-9.
    1. Sin DD, MacNee W. Chronic obstructive pulmonary disease and cardiovascular diseases: a “vulnerable” relationship. Am J Respir Crit Care Med. 2013;187(1):2–4. doi: 10.1164/rccm.201210-1953ED.
    1. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155–61. doi: 10.1164/rccm.201201-0034OC.
    1. Stone IS, Barnes NC, Petersen SE. Chronic obstructive pulmonary disease: a modifiable risk factor for cardiovascular disease? Heart. 2012;98(14):1055–62. doi: 10.1136/heartjnl-2012-301759.
    1. Cazzola M, Page CP, Rogliani P, Matera MG. beta2-agonist therapy in lung disease. Am J Respir Crit Care Med. 2013;187(7):690–6. doi: 10.1164/rccm.201209-1739PP.
    1. Persson B, Andersson OK, Hjemdahl P, Wysocki M, Agerwall S, Wallin G. Adrenaline infusion in man increases muscle sympathetic nerve activity and noradrenaline overflow to plasma. J Hypertens. 1989;7(9):747–56. doi: 10.1097/00004872-198909000-00009.
    1. Andreas S. Computerised Polysomnography. Thorax. 1994;49:528.
    1. Weatherall M, Wijesinghe M, Perrin K, Beasley R. Long-acting beta-agonists and asthma death: how useful are different study designs to evaluate the potential association? J Asthma. 2010;47(4):434–8. doi: 10.3109/02770900903556439.
    1. Gershon A, Croxford R, Calzavara A, To T, Stanbrook MB, Upshur R, et al. Cardiovascular safety of inhaled long-acting bronchodilators in individuals with chronic obstructive pulmonary disease. JAMA Intern Med. 2013;173(13):1175–85. doi: 10.1001/jamainternmed.2013.1016.
    1. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–85. doi: 10.1183/09031936.00128008.
    1. Fatouleh R, Macefield VG. Respiratory modulation of muscle sympathetic nerve activity is not increased in essential hypertension or chronic obstructive pulmonary disease. J Physiol. 2011;589(Pt 20):4997–5006. doi: 10.1113/jphysiol.2011.210534.
    1. Cazzola M, Imperatore F, Salzillo A, Di Perna F, Calderaro F, Imperatore A, et al. Cardiac effects of formoterol and salmeterol in patients suffering from COPD with preexisting cardiac arrhythmias and hypoxemia. Chest. 1998;114(2):411–5. doi: 10.1378/chest.114.2.411.
    1. Wouters EF. The systemic face of airway diseases: the role of C-reactive protein. Eur Respir J. 2006;27(5):877–9.
    1. Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol. 2006;101(3):971–85. doi: 10.1152/japplphysiol.00313.2006.
    1. Heindl S, Lehnert M, Criée CP, Hasenfuß G, Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001;164:597–601. doi: 10.1164/ajrccm.164.4.2007085.
    1. Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss G, et al. Slow breathing reduces sympathoexcitation in COPD. Eur Respir J. 2008;32(2):387–92. doi: 10.1183/09031936.00109607.
    1. Macklem PT. Therapeutic implications of the pathophysiology of COPD. Eur Respir J. 2010;35(3):676–80. doi: 10.1183/09031936.00120609.
    1. Andreas S, Anker SD, Scanlon PD, Somers VK. Neurohumoral activation as a link to systemic manifestation of chronic lung disease. Chest. 2005;128:3618–24. doi: 10.1378/chest.128.5.3618.
    1. van Gestel AJ, Kohler M, Clarenbach CF. Sympathetic overactivity and cardiovascular disease in patients with chronic obstructive pulmonary disease (COPD) Discov Med. 2012;14(79):359–68.
    1. Wallin BG, Esler M, Dorward P, Eisenhofer G, Ferrier C, Westerman R, et al. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol Lond. 1992;453:45–58. doi: 10.1113/jphysiol.1992.sp019217.
    1. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension. 2009;54(4):690–7. doi: 10.1161/HYPERTENSIONAHA.108.119883.
    1. Delius W, Hagbarth KE, Hongell A, Wallin BG. General characteristics of sympathetic activity in human muscle nerves. Acta Physiol Scand. 1972;84:65–81. doi: 10.1111/j.1748-1716.1972.tb05157.x.
    1. Andreas S, Reiter H, Luthje L, Delekat A, Grunewald RW, Hasenfuss G, et al. Differential effects of theophylline on sympathetic excitation, hemodynamics, and breathing in congestive heart failure. Circulation. 2004;110(15):2157–62. doi: 10.1161/01.CIR.0000144356.39262.16.
    1. Del Colle S, Milan A, Caserta M, Dematteis A, Naso D, Mulatero P, et al. Baroreflex sensitivity is impaired in essential hypertensives with central obesity. J Hum Hypertens. 2007;21(6):473–8.
    1. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3): 354-81.
    1. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group Circulation. 1990;82(5):1730–6.
    1. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85. doi: 10.1056/NEJM199908193410806.
    1. Grassi G, Seravalle G, Quarti-Trevano F, Dell'oro R. Sympathetic activation in congestive heart failure: evidence, consequences and therapeutic implications. Curr Vasc Pharmacol. 2009;7(2):137–45. doi: 10.2174/157016109787455699.
    1. Busse WW, O'Byrne PM, Bleecker ER, Lotvall J, Woodcock A, Andersen L, et al. Safety and tolerability of the novel inhaled corticosteroid fluticasone furoate in combination with the beta2 agonist vilanterol administered once daily for 52 weeks in patients > =12 years old with asthma: a randomised trial. Thorax. 2013;68(6):513–20. doi: 10.1136/thoraxjnl-2012-202606.
    1. Hanania NA, Feldman G, Zachgo W, Shim JJ, Crim C, Sanford L, et al. The efficacy and safety of the novel long-acting beta2 agonist vilanterol in patients with COPD: a randomized placebo-controlled trial. Chest. 2012;142(1):119–27. doi: 10.1378/chest.11-2231.
    1. Beier J, Chanez P, Martinot JB, Schreurs AJ, Tkacova R, Bao W, et al. Safety, tolerability and efficacy of indacaterol, a novel once-daily beta(2)-agonist, in patients with COPD: a 28-day randomised, placebo controlled clinical trial. Pulm Pharmacol Ther. 2007;20(6):740–9. doi: 10.1016/j.pupt.2006.09.001.
    1. Jensen MT, Marott JL, Lange P, Vestbo J, Schnohr P, Nielsen OW, et al. Resting heart rate is a predictor of mortality in COPD. Eur Respir J. 2013;42(2):341–9. doi: 10.1183/09031936.00072212.
    1. Castagno D, Skali H, Takeuchi M, Swedberg K, Yusuf S, Granger CB, et al. Association of heart rate and outcomes in a broad spectrum of patients with chronic heart failure: results from the CHARM (Candesartan in Heart Failure: Assessment of Reduction in Mortality and morbidity) program. J Am Coll Cardiol. 2012;59(20):1785–95. doi: 10.1016/j.jacc.2011.12.044.
    1. Vestbo J, Anderson JA, Calverley PM, Celli B, Ferguson GT, Jenkins C, et al. Adherence to inhaled therapy, mortality and hospital admission in COPD. Thorax. 2009;64(11):939–43. doi: 10.1136/thx.2009.113662.
    1. Heindl S, Dodt C, Krahwinkel M, Hasenfuss G, Andreas S. Short term effect of continuous positive airway pressure on muscle sympathetic nerve activity in patients with chronic heart failure. Heart. 2001;85(2):185–90. doi: 10.1136/heart.85.2.185.
    1. Velez-Roa S, Renard M, Degaute JP, van de Borne P. Peripheral sympathetic control during dobutamine infusion: effects of aging and heart failure. J Am Coll Cardiol. 2003;42(9):1605–10. doi: 10.1016/j.jacc.2003.07.004.
    1. Al-Hesayen A, Azevedo ER, Newton GE, Parker JD. The effects of dobutamine on cardiac sympathetic activity in patients with congestive heart failure. J Am Coll Cardiol. 2002;39(8):1269–74. doi: 10.1016/S0735-1097(02)01783-7.
    1. Cekici L, Valipour A, Kohansal R, Burghuber OC. Short-term effects of inhaled salbutamol on autonomic cardiovascular control in healthy subjects: a placebo-controlled study. Br J Clin Pharmacol. 2009;67(4):394–402. doi: 10.1111/j.1365-2125.2009.03377.x.
    1. Guhan AR, Cooper S, Oborne J, Lewis S, Bennett J, Tattersfield AE. Systemic effects of formoterol and salmeterol: a dose-response comparison in healthy subjects. Thorax. 2000;55(8):650–6. doi: 10.1136/thorax.55.8.650.
    1. Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32. doi: 10.1161/01.CIR.96.9.3224.
    1. Vassaux C, Torre-Bouscoulet L, Zeineldine S, Cortopassi F, Paz-Diaz H, Celli BR, et al. Effects of hyperinflation on the oxygen pulse as a marker of cardiac performance in COPD. Eur Respir J. 2008;32(5):1275–82. doi: 10.1183/09031936.00151707.
    1. Barr RG, Bluemke DA, Ahmed FS, Carr JJ, Enright PL, Hoffman EA, et al. Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med. 2010;362(3):217–27. doi: 10.1056/NEJMoa0808836.
    1. Krieger BP. Hyperinflation and intrinsic positive end-expiratory pressure: less room to breathe. Respiration. 2009;77(3):344–50. doi: 10.1159/000192790.
    1. Easton PA, Hawes HG, Doig CJ, Johnson MW, Yokoba M, Wilde ER. Parasternal muscle activity decreases in severe COPD with salmeterol-fluticasone propionate. Chest. 2010;137(3):558–65. doi: 10.1378/chest.09-0197.
    1. Gomes ME, Aengevaeren WR, Lenders JW, Verheugt FW, Smits P, Tack CJ. Improving myocardial perfusion by percutaneous coronary intervention reduces central sympathetic activity in stable angina. Clin Cardiol. 2010;33(6):E16–21. doi: 10.1002/clc.20676.
    1. Man WD, Mustfa N, Nikoletou D, Kaul S, Hart N, Rafferty GF, et al. Effect of salmeterol on respiratory muscle activity during exercise in poorly reversible COPD. Thorax. 2004;59(6):471–6. doi: 10.1136/thx.2003.019620.

Source: PubMed

3
Iratkozz fel