The Energy Costs of Prematurity and the Neonatal Intensive Care Unit (NICU) Experience

John B C Tan, Danilo S Boskovic, Danilyn M Angeles, John B C Tan, Danilo S Boskovic, Danilyn M Angeles

Abstract

Premature neonates are in an energy deficient state due to (1) oxygen desaturation and hypoxia events, (2) painful and stressful stimuli, (3) illness, and (4) neurodevelopmental energy requirements. Failure to correct energy deficiency in premature infants may lead to adverse effects such as neurodevelopmental delay and negative long-term metabolic and cardiovascular outcomes. The effects of energy dysregulation and the challenges that clinicians in the Neonatal Intensive Care Unit (NICU) face in meeting the premature infant's metabolic demands are discussed. Specifically, the focus is on the effects of pain and stress on energy homeostasis. Energy deficiency is a complex problem and requires a multi-faceted solution to promote optimum development of premature infants.

Keywords: energy; nutrition; pain; premature neonate; sucrose.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Causes of energy deficiency in the premature infant. (ATP, adenosine triphosphate; SNS, sympathetic nervous system).

References

    1. Dinerstein A., Nieto R.M., Solana C.L., Perez G.P., Otheguy L.E., Larguia A.M. Early and aggressive nutritional strategy (parenteral and enteral) decreases postnatal growth failure in very low birth weight infants. J. Perinatol. 2006;26:436–442. doi: 10.1038/sj.jp.7211539.
    1. Ramel S.E., Brown L.D., Georgieff M.K. The Impact of Neonatal Illness on Nutritional Requirements—One Size Does Not Fit All. Curr. Pediatr. Rep. 2014;2:248–254. doi: 10.1007/s40124-014-0059-3.
    1. Ramel S.E., Demerath E.W., Gray H.L., Younge N., Boys C., Georgieff M.K. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology. 2012;102:19–24. doi: 10.1159/000336127.
    1. Ehrenkranz R.A., Dusick A.M., Vohr B.R., Wright L.L., Wrage L.A., Poole W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117:1253–1261. doi: 10.1542/peds.2005-1368.
    1. Lapillonne A. Feeding the preterm infant after discharge. World Rev. Nutr. Diet. 2014;110:264–277. doi: 10.1159/000358475.
    1. Vargas J., Junco M., Gomez C., Lajud N. Early Life Stress Increases Metabolic Risk, HPA Axis Reactivity and Depressive-Like Behavior When Combined with Postweaning Social Isolation in Rats. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0162665.
    1. Stevens B., Yamada J., Ohlsson A., Haliburton S., Shorkey A. Sucrose for analgesia (pain relief) in newborn infants undergoing painful procedures. Cochrane Database Syst. Rev. 2016;7 doi: 10.1002/14651858.CD001069.pub5.
    1. Carbajal R., Rousset A., Danan C., Coquery S., Nolent P., Ducrocq S., Saizou C., Lapillonne A., Granier M., Durand P., et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA. 2008;300:60–70. doi: 10.1001/jama.300.1.60.
    1. Angeles D.M., Ashwal S., Wycliffe N.D., Ebner C., Fayard E., Sowers L., Holshouser B.A. Relationship between opioid therapy, tissue-damaging procedures and brain metabolites as measured by proton MRS in asphyxiated term neonates. Pediatr. Res. 2007;61:614–621. doi: 10.1203/pdr.0b013e318045bde9.
    1. Asmerom Y., Slater L., Boskovic D.S., Bahjri K., Holden M.S., Phillips R., Deming D., Ashwal S., Fayard E., Angeles D.M. Oral sucrose for heel lance increases adenosine triphosphate use and oxidative stress in preterm neonates. J. Pediatr. 2013;163:29–35. doi: 10.1016/j.jpeds.2012.12.088.
    1. Holsti L., Grunau R.E. Considerations for using sucrose to reduce procedural pain in preterm infants. Pediatrics. 2010;125:1042–1047. doi: 10.1542/peds.2009-2445.
    1. Stevens B., Yamada J., Beyene J., Gibbins S., Petryshen P., Stinson J., Narciso J. Consistent management of repeated procedural pain with sucrose in preterm neonates: Is it effective and safe for repeated use over time? Clin. J. Pain. 2005;21:543–548. doi: 10.1097/01.ajp.0000149802.46864.e2.
    1. Taddio A., Shah V., Atenafu E., Katz J. Influence of repeated painful procedures and sucrose analgesia on the development of hyperalgesia in newborn infants. Pain. 2009;144:43–48. doi: 10.1016/j.pain.2009.02.012.
    1. Muralidhara D.V., Shetty P.S. Sucrose feeding stimulates basal metabolism & nonshivering thermogenesis in undernourished rats. Indian J. Med. Res. 1990;92:447–451.
    1. Laugero K.D. A new perspective on glucocorticoid feedback: Relation to stress, carbohydrate feeding and feeling better. J. Neuroendocrinol. 2001;13:827–835. doi: 10.1046/j.1365-2826.2001.00706.x.
    1. Laugero K.D. Reinterpretation of basal glucocorticoid feedback: Implications to behavioral and metabolic disease. Vitam. Horm. 2004;69:1–29. doi: 10.1016/S0083-6729(04)69001-7.
    1. Goran M.I., Dumke K., Bouret S.G., Kayser B., Walker R.W., Blumberg B. The obesogenic effect of high fructose exposure during early development. Nat. Rev. Endocrinol. 2013;9:494–500. doi: 10.1038/nrendo.2013.108.
    1. Tappy L., Egli L., Lecoultre V., Schneider P. Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: A review of human trials. Nutr. Metab. 2013;10:54. doi: 10.1186/1743-7075-10-54.
    1. Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4.
    1. Tchirikov M., Zhumadilov Z.S., Bapayeva G., Bergner M., Entezami M. The effect of intraumbilical fetal nutrition via a subcutaneously implanted port system on amino acid concentration by severe IUGR human fetuses. J. Perinat. Med. 2017;45:227–236. doi: 10.1515/jpm-2016-0155.
    1. Denne S.C. Protein and energy requirements in preterm infants. Semin. Neonatol. SN. 2001;6:377–382. doi: 10.1053/siny.2001.0059.
    1. Fairchild K., Mohr M., Paget-Brown A., Tabacaru C., Lake D., Delos J., Moorman J.R., Kattwinkel J. Clinical associations of immature breathing in preterm infants: Part 1—Central apnea. Pediatr. Res. 2016;80:21–27. doi: 10.1038/pr.2016.43.
    1. Plank M.S., Boskovic D.S., Sowers L.C., Angeles D.M. Biochemical markers of neonatal hypoxia. Pediatr. Health. 2008;2:485–501. doi: 10.2217/17455111.2.4.485.
    1. Michiels C. Physiological and pathological responses to hypoxia. Am. J. Pathol. 2004;164:1875–1882. doi: 10.1016/S0002-9440(10)63747-9.
    1. Slater L., Asmerom Y., Boskovic D.S., Bahjri K., Plank M.S., Angeles K.R., Phillips R., Deming D., Ashwal S., Hougland K., et al. Procedural pain and oxidative stress in premature neonates. J. Pain Off. J. Am. Pain Soc. 2012;13:590–597. doi: 10.1016/j.jpain.2012.03.010.
    1. Holsti L., Grunau R.E., Oberlander T.F., Whitfield M.F., Weinberg J. Body movements: An important additional factor in discriminating pain from stress in preterm infants. Clin. J. Pain. 2005;21:491–498. doi: 10.1097/01.ajp.0000146163.30776.44.
    1. Flatters S.J. The Contribution of Mitochondria to Sensory Processing and Pain. Prog. Mol. Biol. Transl. Sci. 2015;131:119–146.
    1. Steinhorn D.M., Green T.P. Severity of illness correlates with alterations in energy metabolism in the pediatric intensive care unit. Crit. Care Med. 1991;19:1503–1509. doi: 10.1097/00003246-199112000-00011.
    1. Cerra F.B., Siegel J.H., Coleman B., Border J.R., McMenamy R.R. Septic autocannibalism. A failure of exogenous nutritional support. Ann. Surg. 1980;192:570–580. doi: 10.1097/00000658-198010000-00015.
    1. Mehta N.M., Duggan C.P. Nutritional Deficiencies during Critical Illness. Pediatr. Clin. N. Am. 2009;56:1143–1160. doi: 10.1016/j.pcl.2009.06.007.
    1. Dao D.T., Anez-Bustillos L., Cho B.S., Li Z., Puder M., Gura K.M. Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients. 2017;9 doi: 10.3390/nu9111185.
    1. De Albuquerque Wilasco M.I., Uribe-Cruz C., Santetti D., Fries G.R., Dornelles C.T.L., da Silveira T.R. IL-6, TNF-α, IL-10 and nutritional status in pediatric patients with biliary atresia. J. Pediatr. (Rio J.) 2017;93:517–524. doi: 10.1016/j.jped.2016.11.009.
    1. Harris M.C., Costarino A.T., Sullivan J.S., Dulkerian S., McCawley L., Corcoran L., Butler S., Kilpatrick L. Cytokine elevations in critically ill infants with sepsis and necrotizing enterocolitis. J. Pediatr. 1994;124:105–111. doi: 10.1016/S0022-3476(94)70264-0.
    1. Harris J.J., Jolivet R., Attwell D. Synaptic energy use and supply. Neuron. 2012;75:762–777. doi: 10.1016/j.neuron.2012.08.019.
    1. Brummelte S., Grunau R.E., Chau V., Poskitt K.J., Brant R., Vinall J., Gover A., Synnes A.R., Miller S.P. Procedural pain and brain development in premature newborns. Ann. Neurol. 2012;71:385–396. doi: 10.1002/ana.22267.
    1. Miller S.P., Ferriero D.M. From selective vulnerability to connectivity: Insights from newborn brain imaging. Trends Neurosci. 2009;32:496–505. doi: 10.1016/j.tins.2009.05.010.
    1. Kuzawa C.W. Adipose tissue in human infancy and childhood: An evolutionary perspective. Am. J. Phys. Anthropol. 1998;27:177–209. doi: 10.1002/(SICI)1096-8644(1998)107:27+<177::AID-AJPA7>;2-B.
    1. Harris J.J., Reynell C., Attwell D. The physiology of developmental changes in BOLD functional imaging signals. Dev. Cogn. Neurosci. 2011;1:199–216. doi: 10.1016/j.dcn.2011.04.001.
    1. Hay W.W., Brown L.D., Denne S.C. Energy requirements, protein-energy metabolism and balance and carbohydrates in preterm infants. World Rev. Nutr. Diet. 2014;110:64–81. doi: 10.1159/000358459.
    1. Neu J. Gastrointestinal development and meeting the nutritional needs of premature infants. Am. J. Clin. Nutr. 2007;85:629S–634S. doi: 10.1093/ajcn/85.2.629S.
    1. Burrin D.G., Stoll B. Key nutrients and growth factors for the neonatal gastrointestinal tract. Clin. Perinatol. 2002;29:65–96. doi: 10.1016/S0095-5108(03)00065-4.
    1. Jacobi S.K., Odle J. Nutritional Factors Influencing Intestinal Health of the Neonate. Adv. Nutr. Int. Rev. J. 2012;3:687–696. doi: 10.3945/an.112.002683.
    1. Stoll B., Horst D.A., Cui L., Chang X., Ellis K.J., Hadsell D.L., Suryawan A., Kurundkar A., Maheshwari A., Davis T.A., et al. Chronic Parenteral Nutrition Induces Hepatic Inflammation, Steatosis and Insulin Resistance in Neonatal Pigs. J. Nutr. 2010;140:2193–2200. doi: 10.3945/jn.110.125799.
    1. Tappenden K.A. Mechanisms of enteral nutrient-enhanced intestinal adaptation. Gastroenterology. 2006;130:S93–S99. doi: 10.1053/j.gastro.2005.11.051.
    1. Reali A., Greco F., Marongiu G., Deidda F., Atzeni S., Campus R., Dessì A., Fanos V. Individualized fortification of breast milk in 41 Extremely Low Birth Weight (ELBW) preterm infants. Clin. Chim. Acta. 2015;451:107–110. doi: 10.1016/j.cca.2015.04.027.
    1. Ibrahim H.M., Jeroudi M.A., Baier R.J., Dhanireddy R., Krouskop R.W. Aggressive early total parental nutrition in low-birth-weight infants. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2004;24:482–486. doi: 10.1038/sj.jp.7211114.
    1. Shalak L., Perlman J.M. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum. Dev. 2004;80:125–141. doi: 10.1016/j.earlhumdev.2004.06.003.
    1. Georgieff M.K., Brunette K.E., Tran P.V. Early life nutrition and neural plasticity. Dev. Psychopathol. 2015;27:411–423. doi: 10.1017/S0954579415000061.
    1. Hensch T.K. Critical period regulation. Annu. Rev. Neurosci. 2004;27:549–579. doi: 10.1146/annurev.neuro.27.070203.144327.
    1. Ramel S.E., Georgieff M.K. Preterm nutrition and the brain. World Rev. Nutr. Diet. 2014;110:190–200. doi: 10.1159/000358467.
    1. Stephens B.E., Walden R.V., Gargus R.A., Tucker R., McKinley L., Mance M., Nye J., Vohr B.R. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics. 2009;123:1337–1343. doi: 10.1542/peds.2008-0211.
    1. Isaacs E.B., Morley R., Lucas A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J. Pediatr. 2009;155:229–234. doi: 10.1016/j.jpeds.2009.02.030.
    1. Fenton T.R., Anderson D., Groh-Wargo S., Hoyos A., Ehrenkranz R.A., Senterre T. An Attempt to Standardize the Calculation of Growth Velocity of Preterm Infants-Evaluation of Practical Bedside Methods. J. Pediatr. 2017 doi: 10.1016/j.jpeds.2017.10.005.
    1. Holden M.S., Hopper A., Slater L., Asmerom Y., Esiaba I., Boskovic D.S., Angeles D.M. Urinary Hypoxanthine as a Measure of Increased ATP Utilization in Late Preterm Infants. ICAN Infant Child Adolesc. Nutr. 2014 doi: 10.1177/1941406414526618.
    1. Esiaba I., Angeles D.M., Holden M.S., Tan J.B.C., Asmerom Y., Gollin G., Boskovic D.S. Urinary Allantoin Is Elevated in Severe Intraventricular Hemorrhage in the Preterm Newborn. Transl. Stroke Res. 2016;7:97–102. doi: 10.1007/s12975-015-0405-y.
    1. Sammallahti S., Kajantie E., Matinolli H.-M., Pyhälä R., Lahti J., Heinonen K., Lahti M., Pesonen A.-K., Eriksson J.G., Hovi P., et al. Nutrition after preterm birth and adult neurocognitive outcomes. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0185632.
    1. Martin A., Connelly A., Bland R.M., Reilly J.J. Health impact of catch-up growth in low-birth weight infants: Systematic review, evidence appraisal and meta-analysis. Matern. Child. Nutr. 2016 doi: 10.1111/mcn.12297.
    1. Rice M.S., Valentine C.J. Neonatal Body Composition: Measuring Lean Mass as a Tool to Guide Nutrition Management in the Neonate. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2015;30:625–632. doi: 10.1177/0884533615578917.
    1. Raaijmakers A., Allegaert K. Catch-Up Growth in Former Preterm Neonates: No Time to Waste. Nutrients. 2016;8 doi: 10.3390/nu8120817.
    1. Jaquet D., Deghmoun S., Chevenne D., Collin D., Czernichow P., Lévy-Marchal C. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia. 2005;48:849–855. doi: 10.1007/s00125-005-1724-4.
    1. Hay W.W. Aggressive Nutrition of the Preterm Infant. Curr. Pediatr. Rep. 2013;1 doi: 10.1007/s40124-013-0026-4.
    1. Victora C.G., Barros F.C., Horta B.L., Martorell R. Short-term benefits of catch-up growth for small-for-gestational-age infants. Int. J. Epidemiol. 2001;30:1325–1330. doi: 10.1093/ije/30.6.1325.
    1. Jain V., Singhal A. Catch up growth in low birth weight infants: Striking a healthy balance. Rev. Endocr. Metab. Disord. 2012;13:141–147. doi: 10.1007/s11154-012-9216-6.
    1. Ramel S.E., Gray H.L., Ode K.L., Younge N., Georgieff M.K., Demerath E.W. Body composition changes in preterm infants following hospital discharge: Comparison with term infants. J. Pediatr. Gastroenterol. Nutr. 2011;53:333–338. doi: 10.1097/MPG.0b013e3182243aa7.
    1. Olhager E., Törnqvist C. Body composition in late preterm infants in the first 10 days of life and at full term. Acta Paediatr. 2014;103:737–743. doi: 10.1111/apa.12632.
    1. Johnson M.J., Wootton S.A., Leaf A.A., Jackson A.A. Preterm birth and body composition at term equivalent age: A systematic review and meta-analysis. Pediatrics. 2012;130:e640–e649. doi: 10.1542/peds.2011-3379.
    1. Franco L.P., Morais C.C., Cominetti C. Normal-weight obesity syndrome: Diagnosis, prevalence and clinical implications. Nutr. Rev. 2016;74:558–570. doi: 10.1093/nutrit/nuw019.
    1. Rigo J., de Curtis M., Pieltain C. Nutritional assessment in preterm infants with special reference to body composition. Semin. Neonatol. 2001;6:383–391. doi: 10.1053/siny.2001.0073.
    1. Griffin I.J. Nutritional assessment in preterm infants. Nestlé Nutr. Workshop Ser. Paediatr. Programme. 2007;59:177–192. doi: 10.1159/000098535.
    1. Lapillonne A., Griffin I.J. Feeding preterm infants today for later metabolic and cardiovascular outcomes. J. Pediatr. 2013;162:S7–S16. doi: 10.1016/j.jpeds.2012.11.048.
    1. Embleton N.D., Korada M., Wood C.L., Pearce M.S., Swamy R., Cheetham T.D. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch. Dis. Child. 2016 doi: 10.1136/archdischild-2015-310190.
    1. Peng N.-H., Bachman J., Chen C.-H., Huang L.-C., Lin H.-C., Li T.-C. Energy expenditure in preterm infants during periods of environmental stress in the neonatal intensive care unit. Jpn. J. Nurs. Sci. JJNS. 2014;11:241–247. doi: 10.1111/jjns.12025.
    1. Stevens B., Yamada J., Lee G.Y., Ohlsson A. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst. Rev. 2013;1 doi: 10.1002/14651858.CD001069.pub4.
    1. Atkinson L., Jamieson B., Khoury J., Ludmer J., Gonzalez A. Stress Physiology in Infancy and Early Childhood: Cortisol Flexibility, Attunement and Coordination. J. Neuroendocrinol. 2016;28 doi: 10.1111/jne.12408.
    1. McEwen B.S. Stress, adaptation and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998;840:33–44. doi: 10.1111/j.1749-6632.1998.tb09546.x.
    1. Fernandez E.F., Watterberg K.L. Relative adrenal insufficiency in the preterm and term infant. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2009;29:S44–S49. doi: 10.1038/jp.2009.24.
    1. Heckmann M., Hartmann M.F., Kampschulte B., Gack H., Bödeker R.-H., Gortner L., Wudy S.A. Cortisol production rates in preterm infants in relation to growth and illness: A noninvasive prospective study using gas chromatography-mass spectrometry. J. Clin. Endocrinol. Metab. 2005;90:5737–5742. doi: 10.1210/jc.2005-0870.
    1. Ng P.C. Effect of stress on the hypothalamic-pituitary-adrenal axis in the fetus and newborn. J. Pediatr. 2011;158:e41–e43. doi: 10.1016/j.jpeds.2010.11.012.
    1. Boonen E., Berghe G.V. Novel insights in the HPA-axis during critical illness. Acta Clin. Belg. 2014;69:397–406. doi: 10.1179/2295333714Y.0000000093.
    1. Peeters B., Boonen E., Langouche L., Van den Berghe G. The HPA axis response to critical illness: New study results with diagnostic and therapeutic implications. Mol. Cell. Endocrinol. 2015;408:235–240. doi: 10.1016/j.mce.2014.11.012.
    1. Stephens M.A.C., Wand G. Stress and the HPA Axis. Alcohol Res. Curr. Rev. 2012;34:468–483.
    1. McEwen B.S., Gianaros P.J. Central role of the brain in stress and adaptation: Links to socioeconomic status, health and disease. Ann. N. Y. Acad. Sci. 2010;1186:190–222. doi: 10.1111/j.1749-6632.2009.05331.x.
    1. Simmons P.S., Miles J.M., Gerich J.E., Haymond M.W. Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J. Clin. Investig. 1984;73:412–420. doi: 10.1172/JCI111227.
    1. Haley D.W., Weinberg J., Grunau R.E. Cortisol, contingency learning and memory in preterm and full-term infants. Psychoneuroendocrinology. 2006;31:108–117. doi: 10.1016/j.psyneuen.2005.06.007.
    1. Quesada A.A., Tristão R.M., Pratesi R., Wolf O.T. Hyper-responsiveness to acute stress, emotional problems and poorer memory in former preterm children. Stress Amst. Neth. 2014;17:389–399. doi: 10.3109/10253890.2014.949667.
    1. Wadsby M., Nelson N., Ingemansson F., Samuelsson S., Leijon I. Behaviour problems and cortisol levels in very-low-birth-weight children. Nord. J. Psychiatry. 2014;68:626–632. doi: 10.3109/08039488.2014.907341.
    1. Juruena M.F. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav. 2014;38:148–159. doi: 10.1016/j.yebeh.2013.10.020.
    1. Yang Y., Raine A. Prefrontal Structural and Functional Brain Imaging findings in Antisocial, Violent and Psychopathic Individuals: A Meta-Analysis. Psychiatry Res. 2009;174:81–88. doi: 10.1016/j.pscychresns.2009.03.012.
    1. McKlveen J.M., Morano R.L., Fitzgerald M., Zoubovsky S., Cassella S.N., Scheimann J.R., Ghosal S., Mahbod P., Packard B.A., Myers B., et al. Chronic Stress Increases Prefrontal Inhibition: A Mechanism for Stress-Induced Prefrontal Dysfunction. Biol. Psychiatry. 2016 doi: 10.1016/j.biopsych.2016.03.2101.
    1. Reser J.E. Chronic stress, cortical plasticity and neuroecology. Behav. Processes. 2016;129:105–115. doi: 10.1016/j.beproc.2016.06.010.
    1. Boyer K., Johnston C., Walker C.-D., Filion F., Sherrard A. Does sucrose analgesia promote physiologic stability in preterm neonates? Biol. Neonate. 2004;85:26–31. doi: 10.1159/000074954.
    1. Stang H.J., Snellman L.W., Condon L.M., Conroy M.M., Liebo R., Brodersen L., Gunnar M.R. Beyond dorsal penile nerve block: A more humane circumcision. Pediatrics. 1997;100:E3. doi: 10.1542/peds.100.2.e3.
    1. Tryon M.S., Stanhope K.L., Epel E.S., Mason A.E., Brown R., Medici V., Havel P.J., Laugero K.D. Excessive Sugar Consumption May Be a Difficult Habit to Break: A View From the Brain and Body. J. Clin. Endocrinol. Metab. 2015 doi: 10.1210/jc.2014-4353.
    1. Banga S., Datta V., Rehan H.S., Bhakhri B.K. Effect of Sucrose Analgesia, for Repeated Painful Procedures, on Short-term Neurobehavioral Outcome of Preterm Neonates: A Randomized Controlled Trial. J. Trop. Pediatr. 2016;62:101–106. doi: 10.1093/tropej/fmv079.
    1. Tremblay S., Ranger M., Chau C.M.Y., Ellegood J., Lerch J.P., Holsti L., Goldowitz D., Grunau R.E. Repeated exposure to sucrose for procedural pain in mouse pups leads to long-term widespread brain alterations. Pain. 2017;158:1586–1598. doi: 10.1097/j.pain.0000000000000961.
    1. Ulrich-Lai Y.M., Ostrander M.M., Thomas I.M., Packard B.A., Furay A.R., Dolgas C.M., Van Hooren D.C., Figueiredo H.F., Mueller N.K., Choi D.C., et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology. 2007;148:1823–1834. doi: 10.1210/en.2006-1241.
    1. Ulrich-Lai Y.M., Christiansen A.M., Ostrander M.M., Jones A.A., Jones K.R., Choi D.C., Krause E.G., Evanson N.K., Furay A.R., Davis J.F., et al. Pleasurable behaviors reduce stress via brain reward pathways. Proc. Natl. Acad. Sci. USA. 2010;107:20529–20534. doi: 10.1073/pnas.1007740107.
    1. Slater R., Cornelissen L., Fabrizi L., Patten D., Yoxen J., Worley A., Boyd S., Meek J., Fitzgerald M. Oral sucrose as an analgesic drug for procedural pain in newborn infants: A randomised controlled trial. Lancet. 2010;376:1225–1232. doi: 10.1016/S0140-6736(10)61303-7.
    1. Ulrich-Lai Y.M., Ostrander M.M., Herman J.P. HPA axis dampening by limited sucrose intake: Reward frequency vs. caloric consumption. Physiol. Behav. 2011;103:104–110. doi: 10.1016/j.physbeh.2010.12.011.
    1. Blass E.M., Ciaramitaro V. A new look at some old mechanisms in human newborns: Taste and tactile determinants of state, affect and action. Monogr. Soc. Res. Child Dev. 1994;59:1–81. doi: 10.2307/1166096.
    1. Fitzgerald M. What do we really know about newborn infant pain? Exp. Physiol. 2015;100:1451–1457. doi: 10.1113/EP085134.
    1. Foo H., Mason P. Ingestion analgesia occurs when a bad taste turns good. Behav. Neurosci. 2011;125:956–961. doi: 10.1037/a0025542.
    1. Takamata A., Mack G.W., Gillen C.M., Nadel E.R. Sodium appetite, thirst and body fluid regulation in humans during rehydration without sodium replacement. Am. J. Physiol. 1994;266:R1493–R1502. doi: 10.1152/ajpregu.1994.266.5.R1493.
    1. Tappy L., Lê K.-A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010;90:23–46. doi: 10.1152/physrev.00019.2009.

Source: PubMed

3
Iratkozz fel