The biology of fear- and anxiety-related behaviors

Thierry Steimer, Thierry Steimer

Abstract

Anxiety is a psychological, physiological, and behavioral state induced in animals and humans by a threat to well-being or survival, either actual or potential. It is characterized by increased arousal, expectancy, autonomic and neuroendocrine activation, and specific behavior patterns. The function of these changes is to facilitate coping with an adverse or unexpected situation. Pathological anxiety interferes with the ability to cope successfully with life challenges. Vulnerability to psychopathology appears to be a consequence of predisposing factors (or traits), which result from numerous gene-environment interactions during development (particularly during the perinatal period) and experience (life events), in this review, the biology of fear and anxiety will be examined from systemic (brain-behavior relationships, neuronal circuitry, and functional neuroanatomy) and cellular/molecular (neurotransmitters, hormones, and other biochemical factors) points of view, with particular reference to animal models. These models have been instrumental in establishing the biological correlates of fear and anxiety, although the recent development of noninvasive investigation methods in humans, such as the various neuroimaging techniques, certainly opens new avenues of research in this field. Our current knowledge of the biological bases of fear and anxiety is already impressive, and further progress toward models or theories integrating contributions from the medical, biological, and psychological sciences can be expected.

Keywords: animial models; anxiety; behavior; emotions; fear; neurobiology.

Figures

Figure 1.. A schematic view of major…
Figure 1.. A schematic view of major brain circuits involved in fear and anxiety. External auditory, visual, olfactory, or somatosensory stimuli are relayed by the thalamus to the amygdala and cortex. The basolateral complex (BLA) of the amygdala is the input side of the system, which also receives contextual information from the hippocampal formation (entorhinal cortex, hippocampus, and ventral subiculum). After intra-amygdala processing of the emotional stimuli, the central nucleus of the amygdala (CeA), on the output side, activates the locus ceruleus (LC) and central and peripheral noradrenaline systems (via corticotropin-releasing factor [CRF] neurons), and the hypothalamus (paraventricular nucleus [PVN] and lateral hypothalamus [LH]). The bed nucleus of the stria terminalis (BNST, part of the “extended amygdala”) is also a control center for the neuroendocrine system by integrating information originating from both the hippocampus and the amygdala. In addition, the CeA directly activates various midbrain regions or nuclei responsible for different aspects of the fear/anxiety response: freezing or escape (periaqueductal gray [PAG]), increased respiratory rate (parabrachial nucleus [PBN]), startle (caudal reticulopontine nucleus of the reticular formation [RPC]), and the dorsal motor nucleus of the vagus (DMN) in the medulla, which (together with the lateral hypothalamus) is responsible for the increase in heart rate and blood pressure associated with emotional events. The prefrontal cortex (PFC) processes more elaborate (“cognitive”) information; it modulates the physiological, neuroendocrine, and behavioral responses (via the amygdala), and it is also involved in the extinction of fear- and anxiety-related conditional responses. ACTH, adrenocorticotropic hormone; ANS, autonomous nervous system; BP, blood pressure; GABA, β-aminobutyric acid; Glu, glutamate; NA, noradrenaline (neurotransmitter) or nucleus ambiguus (structure); NTS, nucleus tractus solitarius.

References

    1. Letourneau C. Physiologie des passions. 2nd ed. Paris, France: C. Reinwald &Cie; 1878
    1. Davidson JR. Affective style, mood and anxiety disorders. An affective neuroscience approach. In: Davidson JR, ed. Anxiety Depression and Emotions. Oxford, UK: Oxford University Press; 2000:88–108.
    1. Strongman KT. The Psychology of Emotion. Theories of Emotion in Perspective. Chichester, UK: John Wiley & sons; 1996
    1. Ekman P., Davidson RJ (eds). The Nature of Emotion. Oxford, UK: Oxford University Press; 1994
    1. Panksepp J. Affective Neuroscience. New York, NY: Oxford University Press; 1998
    1. Borod JC (ed). The Neuropsychology of Emotion. Oxford, UK: Oxford University Press; 2000
    1. Davidson JR (ed). Anxiety Depression, and Emotion. Oxford, UK: Oxford University Press; 2000
    1. Lewis M., Haviland-Jones JM (eds). Handbook of Emotions. New York, NY: The Guilford Press; 2000
    1. Cannon WB. The James-Lange theory of emotions: a critical examination and an alternative theory. By Walter B. Cannon, 1927. Am J Psychol. 1987;100:567–586.
    1. Watson JB. Behaviorism. 7th ed. New York, NY: WW Norton & Company; 1970
    1. Ortony A., Turner TJ. What's basic about basic emotions? Psychol Rev. 1990;97:315–331.
    1. Ekman P. Are there basic emotions? Psychol Rev. 1992;99:550–553.
    1. Panksepp J. A critical role for “affective neuroscience” in resolving what is basic about basic emotions. Psychol Rev. 1992;99:554–560.
    1. McFarland D. The Oxford Companion to Animal Behaviour. Oxford, UK: Oxford University Press; 1987
    1. Craig KJ., Brown KJ., Baum A. Environmental factors in the etiology of anxiety. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: the Fourth Generation of Progress. New York, NY: Raven Press; 1995:1325–1339.
    1. Barlow DH. Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. Am Psychol. 2000;55:1247–1263.
    1. Cannon WB. Bodily Changes in Pain, Hunger, Fear and Rage. New York, NY: Appleton; 1915
    1. Engel GL., Schmale AH. Conservation withdrawal: a primary regulatory process for organic homeostasis. In: Physiology, Emotions and Psychosomatic Illness. New York, NY: Elsevier; 1972:57–95.
    1. Henry JP., Stephens PM. Health and the Social Environment: a Sociobiological Approach to Medicine. Berlin, Germany: Springer; 1997
    1. Keay KA., Bandler R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev. 2001;25:669–678.
    1. Bandler R., Price JL., Keay KA. Brain mediation of active and passive emotional coping. In: Mayer EA, Sapers CB, eds. Progress in Brain Research. Vol 122. Amsterdam, The Netherlands: Elsevier Science BV; 2000:333–349.
    1. Panksepp J. The psychoneurology of fear: evolutionary perspectives and the role of animal models in understanding human anxiety. In: Burrows GD, Roth M, Noyes Jr R, eds. Handbook of Anxiety. Volume 3. The Neurobiology of Anxiety. Amsterdam, The Netherlands: Elsevier Science BV; 1990:3–58.
    1. Bakshi VP., Shelton SE., Kalin NH. Neurobiological correlates of defensive behaviors. In: Mayer EA, Sapers CB, eds. Progress in Brain Research. Vol 122. Amsterdam, The Netherlands: Elsevier Science BV; 2000:105–115.
    1. Blanchard DC., Hynd AL., Minke KA., Monemoto T., Blanchard RJ. Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of non-human mammals. Neurosci Biobehav Rev. 2001;25:761–770.
    1. Kavaliers M., Choleris E. Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci Biobehav Rev. 2001;25:577–586.
    1. Koolhaas JM., Korte SM., De Boer SF., et al. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev. 1999;23:925–935.
    1. Parmigiani S., Palanza P., Rodgers J., Ferrari PF. Selection, evolution of behavior and animal models in behavioral neuroscience. Neurosci Biobehav Rev. 1999;23:957–970.
    1. Steimer T., Driscoll P., Schulz P. Brain metabolism of progesterone, coping behaviour and emotional reactivity in male rats from two psychogenetically selected lines. J Neuroendocrinol. 1997;9:169–175.
    1. Perrez M., Reichert M. Stress, Coping, and Health. Seattle, Wash: Hogrefe & Huber Publishers; 1992
    1. Van Egeren L. Stress and coping and behavioral organization. Psychosom Med. 2000;62:451–460.
    1. Pavlov I. Oeuvres choisies. Moscow, Russia: Editions en langues étrangères; 1954:250–251.
    1. Cosnier J. Les névroses expérimentales. Paris, France: Editions du Seuil; 1966
    1. Gottesman II. Schizophrenia Genesis: The Origins of Madness. New York, NY: WH Freeman and Co; 1991
    1. Goldsmith HH., Lemery KS. Linking temperamental fearfulness and anxiety symptoms: a behavior-genetic perspective. Biol Psychiatry. 2000;48:1199–1209.
    1. Kandel ER. From metapsychology to molecular biology: explorations into the nature of anxiety. Am J Psychiatry. 1983;140:1277–1293.
    1. Lister RG. Ethologically based animal models of anxiety disorders. Pharmacol Ther. 1990;46:321–340.
    1. Shekhar A., McCann UD., Meaney MJ., et al. Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl). 2001;157:327–339.
    1. Belzung C., Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001;125:141–149.
    1. Tarantino ML., Bucan M. Dissection of behavior and psychiatric disorders using the mouse as a model. Hum Mol Genet. 2000;9:953–965.
    1. Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 2002;855:18–26.
    1. Panksepp J. The sources of fear and anxiety in the brain. In: Panksepp J, ed. Affective Neuroscience. New York, NY: Oxford University Press; 1998:206–222.
    1. Coplan JD., Rosenblum LA., Gorman JM. Primate models of anxiety. Longitudinal perspectives. Psychiatr Clin North Am. 1995;18:727–743.
    1. LeDoux J. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–184.
    1. Jr Redmond DE., Huang YH. Current concepts. II. New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sci. 1979;25:2149–2162.
    1. Southwick SM., Bremner JD., Rasmusson A., Morgan CA III., Arnsten A., Charney DS. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry. 1999;46:1192–1204.
    1. Aston-Jones G., Rajkowski J., Cohen J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry. 1999;46:1309–1320.
    1. Ziegler DR., Cass WA., Herman JP. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol. 1999;11:361–369.
    1. Sullivan GM., Coplan JD., Kent JM., Gorman JM. The noradrenergic system in pathological anxiety: a focus on panic with relevance to generalized anxiety and phobias. Biol Psychiatry. 1999;46:1205–1218.
    1. Gray JA. The structure of the emotions and the limbic system. In: Physiology, Emotions and Psychosomatic Illness. Amsterdam, The Netherlands: Elsevier; 1972:87–129.
    1. Gray JA. Three fundamental emotion systems. In: Ekman P, Davidson JR, eds. The Nature of Emotion. New York, NY: Oxford University Press; 1994:243–247.
    1. Gray JA. The Neuropsychology of Anxiety. An Enquiry into the Functions of the Septo-hippocampal System. Oxford, UK: Clarendon Press; 1987
    1. Laborit H. Inhibition of action: interdisciplinary approach to its mechanisms and pathophysiology. In: Traue HC, Pennebaker JW, eds. Emotion, Inhibition and Health. Seattle, Wash: Hogrefe & Huber Publishers; 1993:57–79.
    1. Selye H. The Stress of Life. 2nd revised paperback ed. New York, NY: McGraw Hill; 1984
    1. Vianna DML., Landeira-Fernadez J., Brandão ML. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev. 2001;25:711–719.
    1. Coplan JD., Lydiard RB. Brain circuits in panic disorder. Biol Psychiatry. 1998;44:1264–1276.
    1. Goddard AW., Charney DS. Toward an integrated neurobiology of panic disorder. J Clin Psychiatry. 1997;58(suppl 2):4–11.
    1. LeDoux J. Fear and the brain: where have we been, and where are we going? Biol Psychiatry. 1998;44:1229–1238.
    1. LeDoux J. The Emotional Brain. New York, NY: Simon & Schuster; 1998
    1. LeDoux J. The amygdala and emotion: a view through fear. In: Aggleton JP, ed. The Amygdala. Oxford, UK: Oxford University Press; 2000:289–310.
    1. Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci. 2001;24:897–931.
    1. Fendt M., Fanselow MS. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev. 1999;23:743–760.
    1. Phelps EA., O'Connor KJ., Gatenby JC., Gore JC., Grillon C., Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci. 2002;4:437–441.
    1. Killgore WDS., Yurgelun-Todd DA. Sex differences in amygdala activation during the perception of facial affect. Neuroreport. 2001;12:2543–2547.
    1. Davis M. The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP, ed. The Amygdala. Oxford, UK: Oxford University Press; 2000:213–287.
    1. Holahan MR., White NM. Conditioned memory modulation, freezing, and avoidance as measures of amygdala-mediated conditioned fear. Neurobiol Learn Mem. 2002;77:250–275.
    1. Killcross S., Robbins TW., Everitt BJ. Different types of fear-conditioned behaviour mediated by separate nuclei within the amygdala. Nature. 1997;388:377–380.
    1. Goldstein LE., Rasmusson AM., Bunney BS., Roth RH. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 1996;16:4787–4798.
    1. Holland PC., Gallagher M. Amygdala circuitry in attentional and representational processes. Trends Cogn Sci. 1999;3:65–73.
    1. Garavan H., Pendergrass JC., Ross TJ., Stein EA., Risinger RC. Amygdala response to both positively and negatively valenced stimuli. Neuroreport. 2001;12:2779–2783.
    1. Amaral DG. The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol Psychiatry. 2002;51:11–17.
    1. File S., Gonzalez LE., Gallants R. Role of the basolateral nucleus of the amygdala in the formation of a phobia. Neuropsychopharmacology. 1998;19:397–405.
    1. Davis M., Walker DL., Lee Y. Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci. 1997;821:305–331.
    1. Davis M. Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry. 1998;44:1239–1247.
    1. Treit D., Pesold C., Rotzinger S. Dissociating the anti-fear effects of septal and amygdaloid lesions using two pharmacologically validated models of rat anxiety. Behav Neurosci. 1993;105:770–785.
    1. Treit D., Pesold C., Rotzinger S. Noninteractive effects of diazepam and amygdaloid lesions in two animal models of anxiety. Behav Neurosci. 1993;107:1099–1105.
    1. Kalin NH., Shelton SE., Davidson RJ., Kelley AE. The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. J Neurosci. 2001;21:2067–2074.
    1. Aggleton JP. The Amygdala. A Functional Analysis. 2nd ed. Oxford, UK: Oxford University Press; 2000
    1. Herman JP., Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20:78–84.
    1. Lopez JF., Akil H., Watson SJ. Neural circuits mediating stress. Biol Psychiatry. 1999;46:1461–1471.
    1. Davidson RJ., Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3:11–21.
    1. Davidson RJ. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51:68–80.
    1. Gainotti G., Caltagirone C. Emotions and the Dual Brain. Berlin, Germany: Springer-Verlag; 1989
    1. Sullivan RM., Gratton A. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res. 2002;927:69–79.
    1. Tanaka M., Yoshida M., Emoto H., Ishii H. Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol. 2000;405:397–406.
    1. Shishkina GT., Kalinina TS., Sournina NY., Saharov DG., Kobzev VF., Dygalo NN. Effects of antisense oligodeoxynucleotide to the alpha2A-adrenoceptors on the plasma corticosterone level and on elevated plus-maze behavior in rats. Psychoneuroendocrinology. 2002;27:593–601.
    1. Schramm NL., McDonald MP., Limbird LE. The <x2A-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci. 2001;21:4875–4882.
    1. Bagdy G. Serotonin, anxiety, and stress hormones. Focus on 5-HT receptor subtypes, species and gender differences. Ann N Y Acad Sci. 1998;851:357–363.
    1. Graeff FG., Viana MB., Mora PO. Dual role of 5-HT in defense and anxiety. Neurosci Biobehav Rev. 1997;21:791–799.
    1. Graeff FG., Guimaraes FS., De Andrade TG., Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav. 1996;54:129–141.
    1. Gingrich JA., Hen R. Dissecting the role of the serotonin system in neuropsychiatrie disorders using knockout mice. Psychopharmacology (Berl). 2001;155:1–10.
    1. Olivier B., Pattij T., Wood SJ., Oosting R., Sarnyai Z., Toth M. The 5-HT(1A) receptor knockout mouse and anxiety. Behav Pharmacol. 2001;12:439–450.
    1. Pattij T., Groenink L., Hijzen TH., et al. Autonomic changes associated with enhanced anxiety in 5-HT1A receptor knockout mice. Neuropsychopharmacology. 2002;27:380.
    1. Zhuang X., Gross C., Santarelli L., Compan V., Trillat AC., Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology. 1999;21(2, suppl):52S–60S.
    1. Murphy DL., Li Q., Engel S., et al. Genetic perspectives on the serotonin transporter. Brain Res Bull. 2001;56:487–494.
    1. Nutt DJ., Malizia AL. New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry. 2001;179:390–396.
    1. Möhler H., Crestani F., Rudolph U. GABAA-receptor subtypes: a new pharmacology. Curr Opin Pharmacol. 2002;1:22–25.
    1. Möhler H., Fritschy JM., Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther. 2002;300:2–8.
    1. Rudolph U., Crestani F., Möhler H. GABAA receptors subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci. 2001;22:188–194.
    1. Löw K., Crestani F., Keist R., et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science. 2000;290:131–134.
    1. Crestani F., Lorez M., Baer K., et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci. 1999;2:833–839.
    1. Bailey DJ., Tezlaff JE., Cook JM., He X., Helmstetter FJ. Effects of hippocampal injections of a novel ligand selective for the α5β2γ2 subunits of the GABA/benzodiazepine receptor on Pavlovian conditioning. Neurobiol Learn Mem. 2002;78:1–10.
    1. Compagnone NA., Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol. 2002;21:1–56.
    1. Rupprecht R., di Michele F., Hermann B., et al. Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res Brain Res Rev. 2001;37:59–67.
    1. Majewska MD. Steroids and brain activity. Essential dialogue between body and mind. Biochem Pharmacol. 1987;36:3781–3788.
    1. Costa E., Cheney DL., Grayson DR., et al. Pharmacology of neurosteroid biosynthesis. Role of the mitochondrial DBI receptor (MDR) complex. Ann N Y Acad Sci. 1994;746:223–242.
    1. Costa E., Auta J., Guidotti A., Korneyev A., Romeo E. The pharmacology of neurosteroidogenesis. J Steroid Biochem Mol Biol. 1994;49:385–389.
    1. Dunn AJ., Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev. 1990;15:71–100.
    1. Arborelius L., Owens MJ., Plotsky PM., Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol. 1999;160:1–12.
    1. Smagin GN., Heinrichs SC., Dunn AJ. The role of CRH in behavioral responses to stress. Peptides. 2001;22:713–724.
    1. Schulkin J., Gold PW., McEwen BS. Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology. 1998;23:219–243.
    1. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46:1167–1180.
    1. Heinrichs SC., Joppa M. Dissociation of arousal-like from anxiogeniclike actions of brain corticotropin-releasing factor receptor ligands in rats. Behav Brain Res. 2001;122:43–50.
    1. Stenzel-Poore MP., Heinrichs SC., Rivest S., Koob GF., Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci. 1994;14:2579–2584.
    1. Bakshi VP., Kalin NH. Corticotropin-releasing hormone and animal models of anxiety: gene-environment interactions. Biol Psychiatry. 2000;48:1175–1198.
    1. Coste SC., Murray SE., Stenzel-Poore MP. Animal models of CRH excess and CRH receptor deficiency display altered adaptations to stress. Peptides. 2001;22:733–741.
    1. van Gaalen MM., Reul JHM., Gesing A., Stenzel-Poore M., Holsboer F., Steckler T. Mice overexpressing CRH show reduced responsiveness in plasma corticosterone after a 5-HT1A receptor challenge. Genes Brain Behav. 2002;1:174–177.
    1. Dirks A., Groenink L., Schipholt Ml., et al. Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol Psychiatry. 2002;51:583–590.
    1. Muglia LJ., Jacobson L., Weninger SC., Karalis KP., Jeong K., Majzoub JA. The physiology of corticotropin-releasing hormone deficiency in mice. Peptides. 2001;22:725–731.
    1. Dunn AJ., Swiergiel AH. Behavioral responses to stress are intact in CRF-deficient mice. Brain Res. 1999;845:14–20.
    1. Weninger SC., Dunn AJ., Muglia LJ., et al. Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA. 1999;96:8283–8288.
    1. Sleekler T., Holsboer F. Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry. 1999;46:1480–1508.
    1. Holmes A. Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev. 2001;25:261–273.
    1. Takahashi LK. Role of CRF1 and CRF2 receptors in fear and anxiety. Neurosci Biobehav Rev. 2002;25:627–636.
    1. Reul JM., Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol. 2002;2:23–33.
    1. Smith GW., Aubry JM., Dellu F., et al. Corticotropin-releasing factor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron. 1998;20:1093–1102.
    1. Kishimoto T., Radulovic J., Radulovic M., et al. Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone recptor-2. Nat Genet. 2000;24:415–419.
    1. Bale TL., Picetti R., Contarino A., Koob GF., Vale WW., Lee KF. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci. 2002;22:193–199.
    1. Kemp CF., Woods RJ., Lowry PJ. The corticotropin-releasing factor-binding protein: an act of several parts. Peptides. 1998;19:1119–1128.
    1. Seasholtz AF., Burrows HL., Karolyi IJ., Camper SA. Mouse models of altered CRH-binding protein expression. Peptides. 2001;22:743–751.
    1. Sapolsky RM., Krey LC., McEwen BS. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci U S A. 1984;81:6174–6177.
    1. Liberzon I., López JF., Flagel SB., Vázquez DM., Young EA. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol. 1999;11:11–17.
    1. Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev. 2001;25:117–142.
    1. Gass P., Reichardt HM., Strekalova T., Henn F., Tronche F. Mice with targeted mutations of glucocorticoid and mineralocorticoid receptors: models for depression and anxiety? Physiol Behav. 2001;73:811–825.
    1. Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther. 1999;82:1–61.
    1. van Megen HJ., Westenberg HG., den Boer JA., Kahn RS. Cholecystokinin in anxiety. Eur Neuropsychopharmacol. 1996;6:263–280.
    1. Rehfeld JF. Cholecystokinin and panic disorder - three unsettled questions. Regul Pept. 2000;93:79–83.
    1. Dauge V., Lena I. CCK in anxiety and cognitive processes. Neurosci Biobehav Rev. 1998;22:815–825.
    1. De Oliveira RMW., Del Bel EA., Guimarães FS. Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the periaqueductal gray. Neurosci Biobehav Rev. 2001;25:679–685.
    1. Schulz P., Walker JP., Peyrin L., Soulier V., Curtin F., Steimer T. Lower sex hormones in men during anticipatory stress. Neuroreport. 1996;7:3101–3104.
    1. Clement Y., Calatayud F., Belzung C. Genetic basis of anxiety-like behaviour: a critical review. Brain Res Bull. 2002;57:57–71.
    1. Rogers DC., Jones DNC., Nelson PR., et al. Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res. 1999;105:207–217.
    1. van Gaalen MM., Steckler T. Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res. 2000;115:95–106.
    1. Avgustinovich DF., Lipina TV., Bondar NP., Alekseyenko OV., Kudryavtseva NN. Features of genetically defined anxiety in mice. Behav Genet. 2000;30:101–109.
    1. Bert B., Fink H., Huston JP., Voits M. Fisher 344 and Wistar rats differ in anxiety and habituation but not in water maze performance. Neurobiol Learn Mem. 2002;78:11–22.
    1. Rex A., Sondern U., Voigt JP., Franck S., Fink H. Strain differences in fearmotivated behavior of rats. Pharmacol Biochem Behav. 1996;54:107–111.
    1. Wehner JM., Radcliffe RA., Bowers BJ. Quantitative genetics and mouse behavior. Annu Rev Neurosci. 2001;24:845–867.
    1. Griebel G., Belzung C., Perrault G., Sanger DJ. Differences in anxietyrelated behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology (Berl). 2000;148:164–170.
    1. Garrett KM., Niekrasz I., Haque D., Parker KM., Seale TW. Genotypic differences between C57BL/6 and A inbred mice in anxiolytic and sedative actions of diazepam. Behav Genet. 1998;28:125–136.
    1. Wigger A., Loerscher P., Weissenbacher P., Holsboer F., Landgraf R. Crossfostering and cross-breeding of HAB and LAB rats: a genetic rat model of anxiety. Behav Genet. 2001;31:371–382.
    1. Plomin R., DeFries JC., McClearn GE., McGuffin P. Behavioral Genetics. 4th ed. New York, NY: Worth Publishers; 2000
    1. Wehner JM., Radcliffe RA., Rosman ST., et al. Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet. 1997;17:331–334.
    1. Turri MG., Datta SR., DeFries J., Henderson ND., Flint J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr Biol. 2001;11:725–734.
    1. Fernandez-Teruel A., Escorihuela RM., Gray JA., et al. A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res. 2002;12:618–626.
    1. Escorihuela RM., Fernandez-Teruel A., Gil L., Aguilar R., Tobeña A., Driscoll P. Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol Behav. 1999;67:19–26.
    1. Steimer T., la Fleur S., Schulz PE. Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh) and low (RLA/Verh)-avoidance lines. Behav Genet. 1997;27:503–511.
    1. Roozendaal B., Wiersma A., Driscoll P., Koolhaas JM., Bohus B. Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat. Brain Res. 1992;596:35–40.
    1. Wiersma A., Knoellema S., Konsman JP., Bohus B., Koolhaas JM. Corticotropin-releasing hormone modulation of a conditioned stress response in the central amygdala of Roman high (RHA/Verh)-avoidance and low (RLA/Verh)-avoidance rats. Behav Genet. 1997;27:547–555.
    1. Corda MG., Lecca D., Piras G., Di Chiara G., Giorgi O. Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav Genet. 1997;27:527–536.
    1. Aubry JM., Bartanusz V., Driscoll P., Schulz P., Steimer T., Kiss JZ. Corticotropin-releasing factor and vasopressin mRNA levels in Roman highand low-avoidance rats: response to open field exposure. Neuroendocrinology. 1995;61:89–97.
    1. Charnay Y., Steimer T., Hugenin C., Driscoll P. [3H]Paroxetine binding sites: brain regional differences between two psychogenetically selected lines of rats. Neurosci Res Commun. 1995;16:29–35.
    1. Liebsch G., Linthorst ACE., Neumann ID., Reul J., Holsboer FLR. Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology. 1998;19:381–396.
    1. Liebsch G., Montkowski A., Holsboer F., Landgraf R. Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res. 1998;94:301–310.
    1. Landgraf R., Wigger A., Holsboer F., Neumann ID. Hyper-reactive hypothalamo-pituitary-adrenocortical axis in rats bred for high anxiety-related behaviour. J Neuroendocrinal. 1999;11:405–407.
    1. Henniger MSH., Ohl F., Hölter SM., et al. Unconditioned anxiety and social behavior in two rat lines selectively bred for high and low anxietyrelated behaviour. Behav Brain Res. 2000;111:153–163.
    1. Hermann B., Landgraf R., Keck ME., et al. Pharmacological characterisation of cortical y-aminobutyric acid type A (GABAA) receptor in two Wistar rat lines selectively bred for high and low anxiety-related behaviour. World J Biol Psychiatry. 2000;1:137–143.
    1. Keck ME., Wigger A., Welt T., et al. Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for the pathogenesis of affective disorders. Neuropsychopharmacology. 2002;26:94–105.
    1. Henniger MSH., Spanagel R., Wigger A., Landgraf R., Hölter SM. Alcohol self-administration in two rat lines selectively bred for extremes in anxiety-related behavior. Neuropsychopharmacology. 2002;26:729–736.
    1. Sanchez MM., Ladd CO., Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001;13:419–449.
    1. Heim C., Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry. 1999;46:1509–1522.
    1. Heim C., Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49:1023–1039.
    1. Weinstock M. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol. 2001;65:427–451.
    1. Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci. 2001;24:1161–1192.
    1. Wakshlak A., Weinstock M. Neonatal handling reverses behavioral abnormalities induced in rats by prenatal stress. Physiol Behav. 1990;48:289–292.
    1. Meaney MJ., Mitchell JB., Aitken DH., et al. The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology. 1991;16:85–103.
    1. Plotsky PM., Meaney MJ. Early, post-natal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res. 1993;18:195–200.
    1. Smythe JW., Rowe WB., Meaney MJ. Neonatal handling alters serotonin (5-HT) turnover and 5-HT2 receptor binding in selected brain regions: relationship to the handling effect on glucocorticoid receptor expression. Brain Res Dev Brain Res. 1994;80:183–189.
    1. Tejedor-Real P., Costela C., Gibert-Rahola J. Neonatal handling reduces emotional reactivity and susceptibility to learned helplessness. Involvement of catecholaminergic systems. Life Sci. 1998;62:37–50.
    1. Weizman R., Lehman J., Leschiner S., et al. Long-lasting effect of earlyhandling on the peripheral benzodiazepine receptor. Pharmacol Biochem Behav. 1999;64:725–729.
    1. Papaioannou A., Gerozissis K., Prokopiou A., Solaris S., Stylianopoulou F. Sex differences in the effects of neonatal handling on the animal's response to stress and the vulnerability for depressive behaviour. Behav Brain Res. 2002;129:131–139.
    1. Beane ML., Cole MA., Spencer RL., Rudy JW. Neonatal handling enhances contextual fear conditioning and alter corticosterone stress responses in young rats. Horm Behav. 2002;41:33–40.
    1. Fernandez-Teruel A., Escorihuela RM., Driscoll P., Tobena A., Bättig K. Infantile (handling) stimulation and behavior in young Roman high- and low-avoidance rats. Physiol Behav. 1991;50:563–565.
    1. Fernandez-Teruel A., Escorihuela RM., Castellano B., Gonzàlez B., Tobena A. Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairments: focus on the Roman rat lines. Behav Genet. 1997;6:513–526.
    1. Steimer T., Escorihuela RM., Fernandez-Teruel A., Driscoll P. Long-term behavioural and neuroendocrine changes in Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats following neonatal handling. Int J Dev Neurosci. 1998;16:165–174.

Source: PubMed

3
Iratkozz fel