The clinical course of idiopathic pulmonary fibrosis and its association to quality of life over time: longitudinal data from the INSIGHTS-IPF registry

Michael Kreuter, Jeff Swigris, David Pittrow, Silke Geier, Jens Klotsche, Antje Prasse, Hubert Wirtz, Dirk Koschel, Stefan Andreas, Martin Claussen, Christian Grohé, Henrike Wilkens, Lars Hagmeyer, Dirk Skowasch, Joachim F Meyer, Joachim Kirschner, Sven Gläser, Nicolas Kahn, Tobias Welte, Claus Neurohr, Martin Schwaiblmair, Matthias Held, Thomas Bahmer, Tim Oqueka, Marion Frankenberger, Jürgen Behr, Michael Kreuter, Jeff Swigris, David Pittrow, Silke Geier, Jens Klotsche, Antje Prasse, Hubert Wirtz, Dirk Koschel, Stefan Andreas, Martin Claussen, Christian Grohé, Henrike Wilkens, Lars Hagmeyer, Dirk Skowasch, Joachim F Meyer, Joachim Kirschner, Sven Gläser, Nicolas Kahn, Tobias Welte, Claus Neurohr, Martin Schwaiblmair, Matthias Held, Thomas Bahmer, Tim Oqueka, Marion Frankenberger, Jürgen Behr

Abstract

Background: Quality of life (QoL) is profoundly impaired in patients with idiopathic pulmonary fibrosis (IPF). However, data is limited regarding the course of QoL. We therefore analysed longitudinal data from the German INSIGHTS-IPF registry.

Methods: Clinical status and QoL were assessed at enrollment and subsequently at 6- to 12-months intervals. A range of different QoL questionnaires including the St. George's Respiratory Questionnaire (SGRQ) were used.

Results: Data from 424 patients were included; 76.9% male; mean age 68.7 ± 9.1 years, mean FVC% predicted 75.9 ± 19.4, mean DLCO% predicted 36.1 ± 15.9. QoL worsened significantly during follow-up with higher total SGRQ scores (increased by 1.47 per year; 95% CI: 1.17 to 1.76; p < 0.001) and higher UCSD-SOBQ scores and lower EQ-5D VAS and WHO-5 scores. An absolute decline in FVC% predicted of > 10% was associated with a significant deterioration in SGRQ (increasing by 9.08 units; 95% CI: 2.48 to 15.67; p = 0.007), while patients with stable or improved FVC had no significantly change in SGRQ. Patients with a > 10% decrease of DLCO % predicted also had a significant increase in SGRQ (+ 7.79 units; 95% CI: 0.85 to 14.73; p = 0.028), while SQRQ was almost stable in patients with stable or improved DLCO. Patients who died had a significant greater increase in SGRQ total scores (mean 11.8 ± 18.6) at their last follow-up visit prior to death compared to survivors (mean 4.2 ± 18.9; HR = 1.03; 95% CI: 1.01 to 1.04; p < 0.001). All QoL scores across the follow-up period were significantly worse in hospitalised patients compared to non-hospitalised patients, with the worst scores reported in those hospitalised for acute exacerbations.

Conclusions: QoL assessments in the INSIGHTS-IPF registry demonstrate a close relationship between QoL and clinically meaningful changes in lung function, comorbidities, disease duration and clinical course of IPF, including hospitalisation and mortality.

Keywords: Cohort study; Idiopathic pulmonary fibrosis; Patient-related outcomes; SQRQ.

Conflict of interest statement

Ethics approval and consent to participate

The study materials were approved by the Ethics Committee of the Medical Faculty, Technical University of Dresden (EK 255082012), and by further local ethic committees as per local requirements.

Consent for publication

Not applicable.

Competing interests

MK reports grants and personal fees from Roche/InterMune, grants and personal fees from Boehringer Ingelheim, outside the submitted work; AP reports grants and personal fees from Roche/InterMune, grants and personal fees from Boehringer Ingelheim, outside the submitted work; HuWi reports personal fees from Boehringer Ingelheim, and personal fees from Roche, outside the submitted work; MC reports honoraria for lectures from Boehringer Ingelheim Pharma GmbH and Roche Pharma, and for serving on advisory boards from Boehringer Ingelheim, outside the submitted work; DP reports personal fees outside the submitted work from Actelion, Bayer, Boehringer Ingelheim, Sanofi, Biogen, Shield and MSD; DS reports personal fees from Boehringer Ingelheim, Roche, outside the submitted work; SV reports personal fees from Boehringer Ingelheim, personal fees from Roche Pharma, personal fees from Actelion Pharma, grants and personal fees from Novartis Pharma, personal fees from Berlin Chemie, and personal fees from Astra, outside the submitted work; HeWi reports personal fees from Boehringer, personal fees from Roche, during the conduct of the study; personal fees from Bayer, personal fees from Biotest, personal fees from Actelion, personal fees from GSK, and personal fees from Pfizer, outside the submitted work; CN reports honoraria for lectures and serving on advisory boards from Boehringer Ingelheim and Roche Pharma; SA reports case payments from Boehringer Ingelheim, during the conduct of the study; personal fees from Boehringer Ingelheim, and personal fees from Roche, outside the submitted work; SG reports personal fees from Boehringer Ingelheim, personal fees from Roche Pharma, personal fees from Actelion Pharma, grants and personal fees from Novartis Pharma, personal fees from Berlin Chemie, and personal fees from Astra, all outside the submitted work; TW reports grants from Boehringer, during the conduct of the study; TB reports grants from German Center for Lung Research (DZL), personal fees for consultation or lecture from Roche, AstraZeneca, Chiesi, GSK, and Novartis outside the submitted work; JB received grants from Boehringer Ingelheim, and personal fees for consultation or lectures from Actelion, Bayer, Boehringer-Ingelheim, and Roche. He is member of the national and international IPF guideline committee; All other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Change in QoL over 3 years of follow-up SGRQ (p < 0.001), SGRQ symptoms (p = 0.142), SGRQ activity (p < 0.001), SGRQ impacts (p < 0.001), EQ-5D VAS (p < 0.001), UCSD Shortness of breath (p < 0.001), WHO-5 (p < 0.001)) over 3 years of follow-up. EQ-5D VAS, EuroQol five-dimensional questionnaire, recorded as a visual analog scale; QoL, quality of life; SGRQ, St. George’s Respiratory Questionnaire; USCD-SOBQ, University of California San Diego Shortness of Breath Questionnaire; WHO-5, World Health Organization-5 Well-Being Index
Fig. 2
Fig. 2
QoL at last follow-up visit and Change in QoL from baseline to last follow-up visit by change in lung function. * p-value < 0.05 in comparison to category ‘stable/ increase’ DLCO % predicted: diffusing capacity of the lung for carbon monoxide % predicted; FVC % predicted, forced vital capacity % predicted; QoL, quality of life; SGRQ, St. George’s Respiratory Questionnaire
Fig. 3
Fig. 3
Association of QoL at last follow-up and change in QoL between baseline and last follow-up with mortality. Light grey and dark grey bares indicate patients who are censored and died during the observation period, respectively. Hazard ratios adjusted for QoL at baseline. EQ-5D VAS, EuroQol five-dimensional questionnaire, recorded as a visual analog scale; HR, Hazard ratio; QoL, quality of life; SGRQ, St. George’s Respiratory Questionnaire; USCD-SOBQ, University of California San Diego Shortness of Breath Questionnaire; WHO-5, World Health Organization-5 Well-Being Index
Fig. 4
Fig. 4
Mean QoL scores for patients who were hospitalized (dark grey bares) during follow-up compared to patients who were not hospitalized (light grey bares). EQ-5D VAS, EuroQol five-dimensional questionnaire, recorded as a visual analog scale; QoL, quality of life; SGRQ, St. George’s Respiratory Questionnaire; USCD-SOBQ, University of California San Diego Shortness of Breath Questionnaire; WHO-5, World Health Organization-5 Well-Being Index

References

    1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824. doi: 10.1164/rccm.2009-040GL.
    1. Behr J, Kreuter M, Hoeper MM, Wirtz H, Klotsche J, Koschel D, et al. Management of patients with idiopathic pulmonary fibrosis in clinical practice: the INSIGHTS-IPF registry. Eur Respir J. 2015;46:186–196. doi: 10.1183/09031936.00217614.
    1. Raghu G, Amatto VC, Behr J, Stowasser S. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J. 2015;46:1113–1130. doi: 10.1183/13993003.02316-2014.
    1. Kreuter M, Ehlers-Tenenbaum S, Palmowski K, Bruhwyler J, Oltmanns U, Muley T, et al. Impact of comorbidities on mortality in patients with idiopathic pulmonary fibrosis. PLoS One. 2016;11:e0151425. doi: 10.1371/journal.pone.0151425.
    1. Bajwah S, Ross JR, Peacock JL, Higginson IJ, Wells AU, Patel AS, et al. Interventions to improve symptoms and quality of life of patients with fibrotic interstitial lung disease: a systematic review of the literature. Thorax. 2013;68:867–879. doi: 10.1136/thoraxjnl-2012-202040.
    1. Glaspole IN, Chapman SA, Cooper WA, Ellis SJ, Goh NS, Hopkins PM, et al. Health-related quality of life in idiopathic pulmonary fibrosis: data from the Australian IPF registry. Respirology. 2017;22:950–956. doi: 10.1111/resp.12989.
    1. Kreuter M, Swigris J, Pittrow D, Geier S, Klotsche J, Prasse A, et al. Health related quality of life in patients with idiopathic pulmonary fibrosis in clinical practice: insights-IPF registry. Respir Res. 2017;18:139. doi: 10.1186/s12931-017-0621-y.
    1. Yount SE, Beaumont JL, Chen SY, Kaiser K, Wortman K, Van Brunt DL, et al. Health-related quality of life in patients with idiopathic pulmonary fibrosis. Lung. 2016;194:227–234. doi: 10.1007/s00408-016-9850-y.
    1. Szentes BL, Kreuter M, Bahmer T, Birring SS, Claussen M, Waelscher J, et al. Quality of life assessment in interstitial lung diseases:a comparison of the disease-specific K-BILD with the generic EQ-5D-5L. Respir Res. 2018;19:101. doi: 10.1186/s12931-018-0808-x.
    1. Bahmer T, Kirsten AM, Waschki B, Rabe KF, Magnussen H, Kirsten D, et al. Clinical correlates of reduced physical activity in idiopathic pulmonary fibrosis. Respiration. 2016;(91):497–502.
    1. Furukawa T, Taniguchi H, Ando M, Kondoh Y, Kataoka K, Nishiyama O, et al. The St. George's respiratory questionnaire as a prognostic factor in IPF. Respir Res. 2017;18:18. doi: 10.1186/s12931-017-0503-3.
    1. Kreuter M, Bendstrup E, Russell AM, Bajwah S, Lindell K, Adir Y, et al. Palliative care in interstitial lung disease: living well. Lancet Respir Med. 2017;5:968–980. doi: 10.1016/S2213-2600(17)30383-1.
    1. Behr J, Hoeper MM, Kreuter M, Klotsche J, Wirtz H, Pittrow D. Characteristics and management of idiopathic pulmonary fibrosis: INSIGHTS-IPF registry. Dtsch Med Wochenschr. 2012;137:2586–2588. doi: 10.1055/s-0032-1327244.
    1. Behr J, Hoeper MM, Kreuter M, Klotsche J, Wirtz H, Pittrow D. Investigating significant health trends in idiopathic pulmonary fibrosis (INSIGHTS-IPF): rationale, aims and design of a nationwide prospective registry. BMJ Open Respir Res. 2014;1:e000010. doi: 10.1136/bmjresp-2013-000010.
    1. Swigris JJ, Esser D, Wilson H, Conoscenti CS, Schmidt H, Stansen W, et al. Psychometric properties of the St George's respiratory questionnaire in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2017;49:1601788. doi: 10.1183/13993003.01788-2016.
    1. Swigris JJ, Wilson H, Esser D, Conoscenti CS, Stansen W, Kline Leidy N, et al. Psychometric properties of the St George's respiratory questionnaire in patients with idiopathic pulmonary fibrosis: insights from the INPULSIS trials. BMJ Open Respir Res. 2018;5:e000278. doi: 10.1136/bmjresp-2018-000278.
    1. Swigris JJ, Han M, Vij R, Noth I, Eisenstein EL, Anstrom KJ, et al. The UCSD shortness of breath questionnaire has longitudinal construct validity in idiopathic pulmonary fibrosis. Respir Med. 2012;106:144–155.
    1. Swigris JJ, Esser D, Conoscenti CS, Brown KK. The psychometric properties of the St George's respiratory questionnaire (SGRQ) in patients with idiopathic pulmonary fibrosis: a literature review. Health Qual Life Outcomes. 2014;12:124. doi: 10.1186/s12955-014-0124-1.
    1. Yorke J, Jones PW, Swigris JJ. Development and validity testing of an IPF-specific version of the St George's respiratory questionnaire. Thorax. 2010;65:921–926. doi: 10.1136/thx.2010.139121.
    1. Moor CC, Heukels P, Kool M, Wijsenbeek MS. Integrating patient perspectives into personalized medicine in idiopathic pulmonary fibrosis. Front Med (Lausanne) 2017;4:226. doi: 10.3389/fmed.2017.00226.
    1. Yorke J, Spencer LG, Duck A, Ratcliffe S, Kwong GN, Longshaw MS, et al. Cross-Atlantic modification and validation of the a tool to assess quality of life in idiopathic pulmonary fibrosis (ATAQ-IPF-cA) BMJ Open Respir Res. 2014;1:e000024. doi: 10.1136/bmjresp-2014-000024.
    1. Jo HE, Glaspole I, Moodley Y, Chapman S, Ellis S, Goh N, et al. Disease progression in idiopathic pulmonary fibrosis with mild physiological impairment: analysis from the Australian IPF registry. BMC Pulm Med. 2018;18:19. doi: 10.1186/s12890-018-0575-y.
    1. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–2082. doi: 10.1056/NEJMoa1402584.
    1. King TE, Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–2092. doi: 10.1056/NEJMoa1402582.
    1. Richeldi L, Cottin V, du Bois RM, Selman M, Kimura T, Bailes Z, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: combined evidence from the TOMORROW and INPULSIS((R)) trials. Respir Med. 2016;113:74–79. doi: 10.1016/j.rmed.2016.02.001.
    1. Idiopathic Pulmonary Fibrosis Clinical Research N. Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363:620–628. doi: 10.1056/NEJMoa1002110.
    1. Kolb M, Raghu G, Wells AU, Behr J, Richeldi L, Schinzel B, Quaresma M, Stowasser S, Martinez FJ, INSTAGE Investigators Nintedanib plus sildenafil in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2018;379:1722–1731. doi: 10.1056/NEJMoa1811737.
    1. Bahmer T, Kirsten AM, Waschki B, Rabe KF, Magnussen H, Kirsten D, et al. Prognosis and longitudinal changes of physical activity in idiopathic pulmonary fibrosis. BMC Pulm Med. 2017;17:104. doi: 10.1186/s12890-017-0444-0.
    1. Tonelli R, Cocconcelli E, Lanini B, Romagnoli I, Florini F, Castaniere I, et al. Effectiveness of pulmonary rehabilitation in patients with interstitial lung disease of different etiology: a multicenter prospective study. BMC Pulm Med. 2017;17:130. doi: 10.1186/s12890-017-0476-5.
    1. Gomes-Neto M, Silva CM, Ezequiel D, Conceicao CS, Saquetto M, Machado AS. Impact of pulmonary rehabilitation on exercise tolerance and quality of life in patients with idiopathic pulmonary fibrosis: a SYSTEMATIC REVIEW AND META-ANALYSIS. J Cardiopulm Rehabil Prev. 2018;38:273–278.

Source: PubMed

3
Iratkozz fel