Impact of polar body biopsy on embryo morphokinetics-back to the roots in preimplantation genetic testing?

Michael Schenk, Andrea Groselj-Strele, Katharina Eberhard, Elisabeth Feldmeier, Darja Kastelic, Stefanie Cerk, Gregor Weiss, Michael Schenk, Andrea Groselj-Strele, Katharina Eberhard, Elisabeth Feldmeier, Darja Kastelic, Stefanie Cerk, Gregor Weiss

Abstract

Purpose: Polar body biopsy (PBB) is a common technique in preimplantation genetic testing (PGT) to assess the chromosomal status of the oocyte. Numerous studies have been implemented to investigate the impact of biopsies on embryo development; however, information on embryo morphokinetics is still lacking. Hence, we investigated the impact of PBB on morphokinetic parameters in early embryo development.

Methods: Four hundred four embryos (202 PBB, 202 control) were retrospectively analyzed. Patients were stimulated with a gonadotropin-releasing hormone antagonist ovarian hyperstimulation protocol. After fertilization check, embryos were incubated in a time-lapse incubator. The groups were matched for maternal age at time of oocyte retrieval.

Results: Mean group times for reaching specific developmental time points showed no significant difference comparing embryos with PBB conducted and without. Likewise, further subdivision of the PBB group in euploid and aneuploid embryos revealed no differences in the early embryo morphokinetic development compared to the control group. Aneuploidy testing revealed a high prevalence of chromosomal aberrations for chromosomes 21, 4, 16, and 19.

Conclusions: In conclusion, PBB does not impact the morphokinetic parameters of the embryo development. PBB can be safely applied without the risk of impairing the reproductive potential of the embryo and can be highly recommended as safe and practicable PGT approach, especially in countries with prevailing restrictions regarding PGT analysis.

Keywords: Morphokinetic parameters; Polar body biopsy; Preimplantation genetic testing; Time-lapse technology.

Conflict of interest statement

An informed consent was obtained from each woman. The study was approved by the ethical committee of the Medical University of Graz, Austria (approval number: 20-492 ex08/09).

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Flow chart showing the embryo outcome, selection, and quantity. The embryos were divided in one group with PBB conducted and one without (= control). A follow-up on transferred embryos was done by examining β-hCG test and implantation events. Embryos with no transfer were either discarded or cryopreserved according to embryonal development (both groups) and the genetic status (PBB group). The treatment procedure is illustrated top down
Fig. 2
Fig. 2
Group comparison for embryo developmental stages over time (h) for the groups “aneuploid,” “euploid,” and “control.” The time parameters of all three groups do not significantly differ and show almost identical values
Fig. 3
Fig. 3
Aneuploidy screening. a) Distribution of chromosomes 1–22 and chromosome X, respectively, in respect to the individual gains and losses, resulting from the array CGH analysis. b) Distribution of chromosomal aberrations is displayed in respect to which part of the chromosome is concerned or if the whole chromosome is affected

References

    1. De Rycke M, Belva F, Goossens V, Moutou C, SenGupta SB, Traeger-Synodinos J, et al. ESHRE PGD Consortium data collection XIII: cycles from January to December 2010 with pregnancy follow-up to October 2011. Hum Reprod Oxf Engl. 2015;30(8):1763–1789. doi: 10.1093/humrep/dev122.
    1. Montag M, Köster M, Strowitzki T, Toth B. Polar body biopsy. Fertil Steril. 2013;100(3):603–607. doi: 10.1016/j.fertnstert.2013.05.053.
    1. Geraedts J, Sermon K. Preimplantation genetic screening 2.0: the theory. MHR Basic Sci Reprod Med. 2016;22(8):839–844. doi: 10.1093/molehr/gaw033.
    1. Nicolaidis P, Petersen MB. Origin and mechanisms of non-disjunction in human autosomal trisomies. Hum Reprod Oxf Engl. 1998;13(2):313–319. doi: 10.1093/humrep/13.2.313.
    1. VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod BioMed Online. 2014;29(6):729–736. doi: 10.1016/j.rbmo.2014.09.005.
    1. Swain JE. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J Assist Reprod Genet. 2013;30(8):1081–1090. doi: 10.1007/s10815-013-0048-4.
    1. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod Oxf Engl. 2011;26(6):1270–1283. doi: 10.1093/humrep/der037.
    1. Ciray HN, Campbell A, Agerholm IE, Aguilar J, Chamayou S, Esbert M, Sayed S, Time-Lapse User Group Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Hum Reprod Oxf Engl. 2014;29(12):2650–2660. doi: 10.1093/humrep/deu278.
    1. Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod Oxf Engl. 2011;26(7):1616–1624. doi: 10.1093/humrep/der092.
    1. Chen C-K, Yu H-T, Soong Y-K, Lee C-L. New perspectives on preimplantation genetic diagnosis and preimplantation genetic screening. Taiwan J Obstet Gynecol. 2014;53(2):146–150. doi: 10.1016/j.tjog.2014.04.004.
    1. Fauser BCJM, Diedrich K, Devroey P, Evian Annual Reproduction Workshop Group 2007 Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Hum Reprod Update. 2008;14(1):1–14. doi: 10.1093/humupd/dmm034.
    1. Alviggi C, Humaidan P, Ezcurra D. Hormonal, functional and genetic biomarkers in controlled ovarian stimulation: tools for matching patients and protocols. Reprod Biol Endocrinol RBE. 2012;10:9. doi: 10.1186/1477-7827-10-9.
    1. Schenk M, Kröpfl JM, Obermayer-Pietsch B, Feldmeier E, Weiss G. Anti-Mullerian hormone concentrations in individual follicular fluids within one stimulated IVF cycle resemble blood serum values. J Assist Reprod Genet. 2017;34:1115–1120. doi: 10.1007/s10815-017-0908-4.
    1. Huppertz B, Bayer M, Macheiner T, Sargsyan K. Biobank Graz: the hub for innovative biomedical research. Open J Bioresour [Internet]. 2016 Jul 22 [cited 2017 Dec 18];3(1). Available from: 10.5334/ojb.20/
    1. Schenk M, Huppertz B, Obermayer-Pietsch B, Kastelic D, Hörmann-Kröpfl M, Weiss G. Biobanking of different body fluids within the frame of IVF—a standard operating procedure to improve reproductive biology research. J Assist Reprod Genet 2016
    1. Littell RC, Pendergast J, Natarajan R. Modelling covariance structure in the analysis of repeated measures data. Stat Med. 2000;19(13):1793–1819. doi: 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>;2-Q.
    1. Verlinsky Y, Ginsberg N, Lifchez A, Valle J, Moise J, Strom CM. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod Oxf Engl. 1990;5(7):826–829. doi: 10.1093/oxfordjournals.humrep.a137192.
    1. Harper JC, Wilton L, Traeger-Synodinos J, Goossens V, Moutou C, SenGupta SB, et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–247. doi: 10.1093/humupd/dmr052.
    1. Geraedts J, Montag M, Magli MC, Repping S, Handyside A, Staessen C, Harper J, Schmutzler A, Collins J, Goossens V, van der Ven H, Vesela K, Gianaroli L. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod Oxf Engl. 2011;26(11):3173–3180. doi: 10.1093/humrep/der294.
    1. Eldar-Geva T, Srebnik N, Altarescu G, Varshaver I, Brooks B, Levy-Lahad E, Bromiker R, Schimmel MS. Neonatal outcome after preimplantation genetic diagnosis. Fertil Steril. 2014;102(4):1016–1021. doi: 10.1016/j.fertnstert.2014.06.023.
    1. Montag M, van der Ven K, Rösing B, van der Ven H. Polar body biopsy: a viable alternative to preimplantation genetic diagnosis and screening. Reprod BioMed Online. 2009;18(Suppl 1):6–11. doi: 10.1016/S1472-6483(10)60109-5.
    1. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–291. doi: 10.1038/35066065.
    1. Cereda A, Carey JC. The trisomy 18 syndrome. Orphanet J Rare Dis. 2012;7:81. doi: 10.1186/1750-1172-7-81.
    1. Savva GM, Walker K, Morris JK. The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome) Prenat Diagn. 2010;30(1):57–64.
    1. Cimadomo D, Capalbo A, Ubaldi FM, Scarica C, Palagiano A, Canipari R, et al. The impact of biopsy on human embryo developmental potential during preimplantation genetic diagnosis. BioMed Res Int [Internet]. 2016 [cited 2017 Mar 1];2016. Available from:
    1. Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol RBE. 2017;15(1):33. doi: 10.1186/s12958-017-0251-8.
    1. Capalbo A, Ubaldi FM, Rienzi L, Scott R, Treff N. Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities. Hum Reprod Oxf Engl. 2017;32(3):492.
    1. Bar-El L, Kalma Y, Malcov M, Schwartz T, Raviv S, Cohen T, et al. Blastomere biopsy for PGD delays embryo compaction and blastulation: a time-lapse microscopic analysis. J Assist Reprod Genet. 2016;33(11):1449–1457. doi: 10.1007/s10815-016-0813-2.
    1. Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30(2):276–283. doi: 10.1093/humrep/deu331.
    1. Wissing ML, Bjerge MR, Olesen AIG, Hoest T, Mikkelsen AL. Impact of PCOS on early embryo cleavage kinetics. Reprod BioMed Online. 2014;28(4):508–514. doi: 10.1016/j.rbmo.2013.11.017.
    1. Chawla M, Fakih M, Shunnar A, Bayram A, Hellani A, Perumal V, Divakaran J, Budak E. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet. 2015;32(1):69–75. doi: 10.1007/s10815-014-0372-3.
    1. Freour T, Masson D, Mirallie S, Jean M, Bach K, Dejoie T, Barriere P. Active smoking compromises IVF outcome and affects ovarian reserve. Reprod BioMed Online. 2008;16(1):96–102. doi: 10.1016/S1472-6483(10)60561-5.
    1. Mertzanidou A, Wilton L, Cheng J, Spits C, Vanneste E, Moreau Y, Vermeesch JR, Sermon K. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod Oxf Engl. 2013;28(1):256–264. doi: 10.1093/humrep/des362.
    1. Akarsu S, Gode F, Isik AZ, Celenk H, Tamer FB, Erkilinc S. Comparison of the morphokinetic parameters of embryos according to ovarian reserve in IVF cycles. Gynecol Endocrinol. 2017:1–4.
    1. Gryshchenko MG, Pravdyuk AI, Parashchyuk VY. Analysis of factors influencing morphokinetic characteristics of embryos in ART cycles. Gynecol Endocrinol. 2014;30(sup1):6–8. doi: 10.3109/09513590.2014.945763.
    1. Zhang J, Tao W, Liu H, Yu G, Li M, Ma S, Wu K. Morphokinetic parameters from a time-lapse monitoring system cannot accurately predict the ploidy of embryos. J Assist Reprod Genet. 2017;34(9):1173–1178. doi: 10.1007/s10815-017-0965-8.
    1. Levin I, Almog B, Shwartz T, Gold V, Ben-Yosef D, Shaubi M, Amit A, Malcov M. Effects of laser polar-body biopsy on embryo quality. Fertil Steril. 2012;97(5):1085–1088. doi: 10.1016/j.fertnstert.2012.02.008.
    1. Macas E, Xie M, Schaufelberger S, Merki-Feld GS, Stiller R, Imthurn B. Vitrification of human single pronuclear oocytes following two approaches to polar body biopsy. Reprod BioMed Online. 2011;22(4):376–381. doi: 10.1016/j.rbmo.2011.01.004.
    1. Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16(2):R203–R208. doi: 10.1093/hmg/ddm243.
    1. Wright VC, Chang J, Jeng G, Macaluso M, Centers for Disease Control and Prevention (CDC) Assisted reproductive technology surveillance—United States, 2005. Morb Mortal Wkly Rep Surveill Summ Wash DC 2002. 2008;57(5):1–23.

Source: PubMed

3
Iratkozz fel