Protocol for the "Chemobrain in Motion - study" (CIM - study): a randomized placebo-controlled trial of the impact of a high-intensity interval endurance training on cancer related cognitive impairments in women with breast cancer receiving first-line chemotherapy

Max Oberste, Nils Schaffrath, Katharina Schmidt, Wilhelm Bloch, Elke Jäger, Karen Steindorf, Philipp Hartig, Niklas Joisten, Philipp Zimmer, Max Oberste, Nils Schaffrath, Katharina Schmidt, Wilhelm Bloch, Elke Jäger, Karen Steindorf, Philipp Hartig, Niklas Joisten, Philipp Zimmer

Abstract

Background: Up to 80% of breast cancer patients suffer from Cancer Related Cognitive Impairments (CRCI). Exercise is suggested as a potential supportive care option to reduce cognitive decline in cancer patients. This study will investigate the effects of a high-intensity interval endurance training (HIIT) on CRCI in breast cancer patients. Potentially underlying immunological and neurobiological mechanisms, as well as effects on patients' self-perceived cognitive functioning and common cancer related side-effects, will be explored.

Methods: A single-blinded randomized controlled trial will be carried out. The impact of HIIT on CRCI will be compared to that of a placebo-intervention (supervised myofascial release training). Both interventions will be conducted simultaneously with the patients' first-line chemotherapy treatment typically lasting 12-18 weeks. Fifty-nine women with breast cancer will be included in each of the two groups. The study is powered to detect (α = .05, β = .2) a medium effect size difference between the two groups (d = .5) in terms of patients' change in cognitive testing performances, from baseline until the end of the exercise-intervention. The cognitive test battery, recommended by the International Cancer and Cognition Task Force to assess CRCI, will be used as primary measure. This includes the Hopkins Verbal Learning Test (learning/verbal memory), the Controlled Oral Word Association Test (verbal fluency) and the Trail-Making-Test A/B (attention/set-switching). The following endpoints will be assessed as secondary measures: Go-/No-Go test performance (response inhibition), self-perceived cognitive functioning, serum levels of pro- and antiinflammatory markers (tumor necrosis factor alpha, Interleukin-6, Interleukin-1 alpha, Interleukin-1 beta, C-reactive protein, Interleukin-1 receptor antagonist and Interleukin-10), serum levels of neurotrophic and growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1 and vascular endothelial growth factor), as well as common cancer-related side effects (decrease in physical capacity, fatigue, anxiety and depression, sleep disturbances, quality of life and chemotherapy compliance).

Discussion: This study will provide data on the question whether HIIT is an effective supportive therapy that alleviates CRCI in breast cancer patients. Moreover, the present study will help shed light on the underlying mechanisms of potential CRCI improving effects of exercise in breast cancer patients.

Trial registration: DRKS.de, German Clinical Trials Register (DRKS), ID: DRKS00011390 , Registered on 17 January 2018.

Keywords: Breast cancer; Cancer; Chemobrain; Cognition; Exercise; High-intensity interval endurance training.

Conflict of interest statement

Ethics approval and consent to participate

Ethical approval has been obtained from the Ethics Commission of the Legal Department of the Hessen Regional Medical Council (Germany) (reference number: FF175/2016). The trial is registered at drks.de (ID: DRKS00011390) prior to starting recruitment. Patients will be informed about the possible risks and benefits of the study. Participation in this study will be voluntary. Written informed consent will be obtained from all patients.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of the trial. (1) Baseline measurement will be conducted shortly after diagnosis and 1–3 days before beginning of patients’ medical treatment; (2) Participants allocated to the high-intensity interval endurance training perform 3 × 3 min high-intensive intervals, interspersed by 90 s active rest-intervals during the first 8 weeks of their chemotherapy (duration ≈ 20–25 min). During the second half of participants’ chemotherapy, the number of intervals will be increased to 5 (duration ≈ 30–35 min); (2) Participants allocated to the Placebo Control Group receive a supervised myofascial release training program, inducing hardly any muscular effort and cardiovascular stimulation. Duration of sessions in the Placebo Control Group correspond to the duration of sessions in the high-intensity interval endurance training
Fig. 2
Fig. 2
The schedule of enrolment, interventions and assessments. -t0 during the process of enrolment, t0 baseline, t1 after completion of exercise intervention (equivalent to the end of the patients’ first-line chemotherapy), t2 6 months after completion of exercise intervention, HIIT high-intensity interval endurance training; Placebo control group training (supervised myofascial release training), HVLT-R Hopkins Verbal Learning Test - Revised, COWAT Controlled Oral Word Association Test, TMT Trail Making Test part A/part B, INHIB Response Inhibition Test, FACT-COG Functional Assessment of Cancer Therapy – Cognitive function, TNF-α tumor necrosis factor alpha, IL-6 Interleukin-6, IL-1α Interleukin-1 Alpha, IL-1β Interleukin-1 Beta, CRP C-reactive protein, IL-1RA Interleukin-1 receptor antagonist, IL-10 Interleukin-10, BDNF brain-derived neurotrophic factor, VEGF vascular endothelial growth factor, IGF-1 insulin-like growth factor 1, IXT incremental exercise test, MFI-20 The multidimensional Fatigue Inventory, EORTC-QLQ-C30 core questionnaire 30 items of the European Organization for Research and Treatment of Cancer, HADS-D German version of the Hospital Anxiety and Depression Scale PSQI Pittsburgh Sleeping Quality Index. * As demographic data: age, sex, education, socioeconomic status will be captured. ** As anthropometric data height, weight and BMI will be captured

References

    1. Ahles TA, Saykin AJ, McDonald BC, Li Y, Furstenberg CT, Hanscom BS, et al. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010;28:4434–4440. doi: 10.1200/JCO.2009.27.0827.
    1. Biglia N, Bounous VE, Malabaila A, Palmisano D, Torta DME, D’Alonzo M, et al. Objective and self-reported cognitive dysfunction in breast cancer women treated with chemotherapy: a prospective study. Eur J Cancer Care (Engl) 2012;21:485–492. doi: 10.1111/j.1365-2354.2011.01320.x.
    1. Jansen CE, Cooper BA, Dodd MJ, Miaskowski CA. A prospective longitudinal study of chemotherapy-induced cognitive changes in breast cancer patients. Support Care Cancer. 2011;19:1647–1656. doi: 10.1007/s00520-010-0997-4.
    1. Tager FA, McKinley PS, Schnabel FR, El-Tamer M, Cheung YKK, Fang Y, et al. The cognitive effects of chemotherapy in post-menopausal breast cancer patients: a controlled longitudinal study. Breast Cancer Res Treat. 2011;126:271–272. doi: 10.1007/s10549-009-0684-7.
    1. Wefel JS, Saleeba AK, Buzdar AU, Meyers CA. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer. 2010;116:3348–3356. doi: 10.1002/cncr.25098.
    1. Janelsins MC, Kohli S, Mohile SG, Usuki K, Ahles TA, Morrow GR. An update on cancer- and chemotherapy-related cognitive dysfunction: current status. Semin Oncol. 2011;38:431–438. doi: 10.1053/j.seminoncol.2011.03.014.
    1. Koppelmans V, Breteler MMB, Boogerd W, Seynaeve C, Gundy C, Schagen SB. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J Clin Oncol. 2012;30:1080–1086. doi: 10.1200/JCO.2011.37.0189.
    1. Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer. 2004;100:2292–2299. doi: 10.1002/cncr.20272.
    1. Bradley CJ, Neumark D, Bednarek HL, Schenk M. Short-term effects of breast cancer on labor market attachment: results from a longitudinal study. J Health Econ. 2005;24:137–160. doi: 10.1016/j.jhealeco.2004.07.003.
    1. Myers JS. Chemotherapy-related cognitive impairment: the breast cancer experience. Oncol Nurs Forum. 2012;39:E31–E40. doi: 10.1188/12.ONF.E31-E40.
    1. Reid-Arndt SA, Yee A, Perry MC, Hsieh C. Cognitive and psychological factors associated with early posttreatment functional outcomes in breast cancer survivors. J Psychosoc Oncol. 2009;27:415–434. doi: 10.1080/07347330903183117.
    1. Boykoff N, Moieni M, Subramanian SK. Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Surviv. 2009;3:223–232. doi: 10.1007/s11764-009-0098-x.
    1. Fardell JE, Vardy J, Logge W, Johnston I. Single high dose treatment with methotrexate causes long-lasting cognitive dysfunction in laboratory rodents. Pharmacol Biochem Behav. 2010;97:333–339. doi: 10.1016/j.pbb.2010.08.019.
    1. Fardell JE, Vardy J, Johnston IN. The short and long term effects of docetaxel chemotherapy on rodent object recognition and spatial reference memory. Life Sci. 2013;93:596–604. doi: 10.1016/j.lfs.2013.05.006.
    1. de Ruiter MB, Reneman L, Boogerd W, Veltman DJ, Caan M, Douaud G, et al. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Hum Brain Mapp. 2012;33:2971–2983. doi: 10.1002/hbm.21422.
    1. Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, et al. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem. 2007;100:191–201. doi: 10.1111/j.1471-4159.2006.04179.x.
    1. Shibayama O, Yoshiuchi K, Inagaki M, Matsuoka Y, Yoshikawa E, Sugawara Y, et al. Association between adjuvant regional radiotherapy and cognitive function in breast cancer patients treated with conservation therapy. Cancer Med. 2014;3:702–709. doi: 10.1002/cam4.174.
    1. Schilder CM, Seynaeve C, Beex LV, Boogerd W, Linn SC, Gundy CM, et al. Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. J Clin Oncol. 2010;28:1294–1300. doi: 10.1200/JCO.2008.21.3553.
    1. Abdel-Aziz AK, Mantawy EM, Said RS, Helwa R. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries. Exp Neurol. 2016;283(Pt A):129–141. doi: 10.1016/j.expneurol.2016.06.004.
    1. Debess J, Riis JO, Pedersen L, Ewertz M. Cognitive function and quality of life after surgery for early breast cancer in North Jutland, Denmark. Acta Oncol. 2009;48:532–540. doi: 10.1080/02841860802600755.
    1. Oh Pok-Ja. Predictors of cognitive decline in people with cancer undergoing chemotherapy. European Journal of Oncology Nursing. 2017;27:53–59. doi: 10.1016/j.ejon.2016.12.007.
    1. Jean-Pierre P. Management of cancer-related cognitive dysfunction-conceptualization challenges and implications for clinical research and practice. US Oncol. 2010;6:9–12.
    1. Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Hanscom BS, et al. Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat. 2008;110:143–152. doi: 10.1007/s10549-007-9686-5.
    1. Janelsins MC, Kesler SR, Ahles TA, Morrow GR. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry. 2014;26:102–113. doi: 10.3109/09540261.2013.864260.
    1. Wefel JS, Kesler SR, Noll KR, Schagen SB. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA Cancer J Clin. 2015;65:123–138. doi: 10.3322/caac.21258.
    1. Kundu JK, Surh Y-J. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659:15–30. doi: 10.1016/j.mrrev.2008.03.002.
    1. Cheung YT, Ng T, Shwe M, Ho HK, Foo KM, Cham MT, et al. Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann Oncol Off J Eur Soc Med Oncol. 2015;26:1446–1451. doi: 10.1093/annonc/mdv206.
    1. Kesler S, Janelsins M, Koovakkattu D, Palesh O, Mustian K, Morrow G, et al. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun. 2013;30(Suppl):S109–S116. doi: 10.1016/j.bbi.2012.05.017.
    1. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol. 2009;27:3437–3444. doi: 10.1200/JCO.2008.18.9068.
    1. van Vulpen JK, Schmidt ME, Velthuis MJ, Wiskemann J, Schneeweiss A, Vermeulen RCH, et al. Effects of physical exercise on markers of inflammation in breast cancer patients during adjuvant chemotherapy. Breast Cancer Res Treat. 2018;168(2):421–31.
    1. Briones TL, Woods J, Wadowska M. Retracted: involvement of insulin-like growth factor-1 in chemotherapy-related cognitive impairment. Behav Brain Res. 2015;279:112–122. doi: 10.1016/j.bbr.2014.02.052.
    1. Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, et al. Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci U S A. 2011;108:5081–5086. doi: 10.1073/pnas.1007640108.
    1. Schagen SB, Klein M, Reijneveld JC, Brain E, Deprez S, Joly F, et al. Monitoring and optimising cognitive function in cancer patients: Present knowledge and future directions. EJC Suppl EJC Off J EORTC, Eur Organ Res Treat Cancer. 2014;12:29–40.
    1. Ng T, Teo SM, Yeo HL, Shwe M, Gan YX, Cheung YT, et al. Brain-derived neurotrophic factor genetic polymorphism (rs6265) is protective against chemotherapy-associated cognitive impairment in patients with early-stage breast cancer. Neuro-Oncology. 2016;18:244–251. doi: 10.1093/neuonc/nov162.
    1. Janelsins MC, Roscoe JA, Berg MJ, Thompson BD, Gallagher MJ, Morrow GR, et al. IGF-1 partially restores chemotherapy-induced reductions in neural cell proliferation in adult C57BL/6 mice. Cancer Investig. 2010;28:544–553. doi: 10.3109/07357900903405942.
    1. Tang K, Xia FC, Wagner PD, Breen EC. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol. 2010;170:16–22. doi: 10.1016/j.resp.2009.10.007.
    1. Zimmer Philipp, Baumann Freerk T., Oberste Max, Wright Peter, Garthe Alexander, Schenk Alexander, Elter Thomas, Galvao Daniel A., Bloch Wilhelm, Hübner Sven T., Wolf Florian. Effects of Exercise Interventions and Physical Activity Behavior on Cancer Related Cognitive Impairments: A Systematic Review. BioMed Research International. 2016;2016:1–13. doi: 10.1155/2016/1820954.
    1. Hindin SB, Zelinski EM. Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J Am Geriatr Soc. 2012;60:136–141. doi: 10.1111/j.1532-5415.2011.03761.x.
    1. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72:239–252. doi: 10.1097/PSY.0b013e3181d14633.
    1. Archer T. Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta Neurol Scand. 2011;123:221–238. doi: 10.1111/j.1600-0404.2010.01412.x.
    1. Beier M, Bombardier CH, Hartoonian N, Motl RW, Kraft GH. Improved physical fitness correlates with improved cognition in multiple sclerosis. Arch Phys Med Rehabil. 2014;95:1328–1334. doi: 10.1016/j.apmr.2014.02.017.
    1. Paillard T, Rolland Y, de Souto Barreto P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. J Clin Neurol. 2015;11:212–219. doi: 10.3988/jcn.2015.11.3.212.
    1. Mancuso P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016;5:47–56. doi: 10.2147/ITT.S73223.
    1. Knobf MT, Thompson AS, Fennie K, Erdos D. The effect of a community-based exercise intervention on symptoms and quality of life. Cancer Nurs. 2014;37:E43–E50. doi: 10.1097/NCC.0b013e318288d40e.
    1. Mustian K, Janelsins M, Peppone L, Kamen C, Guido J, Heckler C. EXCAP exercise effects on cognitive impairment and inflammation: A URCC NCORP RCT in 479 cancer patients. J Clin Oncol. 2015;33(suppl):abstr 9504.
    1. Miki E, Kataoka T, Okamura H. Feasibility and efficacy of speed-feedback therapy with a bicycle ergometer on cognitive function in elderly cancer patients in Japan. Psychooncology. 2014;23:906–913. doi: 10.1002/pon.3501.
    1. Baumann FT, Zimmer P, Finkenberg K, Hallek M, Bloch W, Elter T. Influence of endurance exercise on the risk of pneumonia and fever in leukemia and lymphoma patients undergoing high dose chemotherapy. A pilot study. J Sports Sci Med. 2012;11:638–642.
    1. Hartman SJ, Nelson SH, Myers E, Natarajan L, Sears DD, Palmer BW, et al. Randomized controlled trial of increasing physical activity on objectively measured and self-reported cognitive functioning among breast cancer survivors: the memory & motion study. Cancer. 2018;124:192–202. doi: 10.1002/cncr.30987.
    1. Mijwel Sara, Backman Malin, Bolam Kate A., Olofsson Emil, Norrbom Jessica, Bergh Jonas, Sundberg Carl Johan, Wengström Yvonne, Rundqvist Helene. Highly favorable physiological responses to concurrent resistance and high-intensity interval training during chemotherapy: the OptiTrain breast cancer trial. Breast Cancer Research and Treatment. 2018;169(1):93–103. doi: 10.1007/s10549-018-4663-8.
    1. Toohey Kellie, Pumpa Kate, McKune Andrew, Cooke Julie, Semple Stuart. High-intensity exercise interventions in cancer survivors: a systematic review exploring the impact on health outcomes. Journal of Cancer Research and Clinical Oncology. 2017;144(1):1–12. doi: 10.1007/s00432-017-2552-x.
    1. Mijwel Sara, Backman Malin, Bolam Kate A., Jervaeus Anna, Sundberg Carl Johan, Margolin Sara, Browall Maria, Rundqvist Helene, Wengström Yvonne. Adding high-intensity interval training to conventional training modalities: optimizing health-related outcomes during chemotherapy for breast cancer: the OptiTrain randomized controlled trial. Breast Cancer Research and Treatment. 2017;168(1):79–93. doi: 10.1007/s10549-017-4571-3.
    1. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40:765–801. doi: 10.2165/11534530-000000000-00000.
    1. Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem. 2014;116:46–58. doi: 10.1016/j.nlm.2014.08.004.
    1. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003.
    1. Adams SC, DeLorey DS, Davenport MH, Stickland MK, Fairey AS, North S, et al. Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: a phase 2 randomized controlled trial. Cancer. 2017;123:4057–4065. doi: 10.1002/cncr.30859.
    1. Adams S, DeLorey D, Davenport M, Fairey A, North S, Courneya K. A randomized controlled trial of the effects of high-intensity aerobic interval training on fatigue, psychosocial function, and health-related quality of life in testicular cancer survivors. Psychooncology. 2018;27(Supple November 2017):68.
    1. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45:679–692. doi: 10.1007/s40279-015-0321-z.
    1. Cabral-Santos C, Castrillon CIM, Miranda RAT, Monteiro PA, Inoue DS, Campos EZ, et al. Inflammatory cytokines and BDNF response to high-intensity intermittent exercise: effect the exercise volume. Front Physiol. 2016;7:509. doi: 10.3389/fphys.2016.00509.
    1. Wefel JS, Vardy J, Ahles T, Schagen SB. International cognition and Cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011;12:703–708. doi: 10.1016/S1470-2045(10)70294-1.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.
    1. Hughes DC, Cox MG, Serice S, Baum G, Harrison C, Basen-Engquist K. Using rating of perceived exertion in assessing cardiorespiratory fitness in endometrial cancer survivors. Physiother Theory Pract. 2017;33:758–765. doi: 10.1080/09593985.2017.1357150.
    1. Oberste M, Bloch W, Hubner ST, Zimmer P. Do reported effects of acute aerobic exercise on subsequent higher cognitive performances remain if tested against an instructed self-myofascial release training control group? A Randomized Controlled Trial. PLoS One. 2016;11:e0167818. doi: 10.1371/journal.pone.0167818.
    1. Courneya KS, Segal RJ, McKenzie DC, Dong H, Gelmon K, Friedenreich CM, et al. Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med Sci Sports Exerc. 2014;46:1744–1751. doi: 10.1249/MSS.0000000000000297.
    1. McGuire R, Waltman N, Zimmerman L. Intervention components promoting adherence to strength training exercise in breast cancer survivors with bone loss. West J Nurs Res. 2011;33:671–689. doi: 10.1177/0193945910379004.
    1. Ormel H.L., van der Schoot G.G.F., Sluiter W.J., Jalving M., Gietema J.A., Walenkamp A.M.E. Predictors of adherence to exercise interventions during and after cancer treatment: A systematic review. Psycho-Oncology. 2018;27(3):713–724. doi: 10.1002/pon.4612.
    1. Chan AW, Tetzlaff JM, Götzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:1–42. doi: 10.1136/bmj.f1.
    1. Hess LM, Chin S. Changes in Cognitive Function Related to Chemotherapy. In: Alberts D, Lluria-Prevatt M, Kha S, Weihs K, editors. Supportive Cancer Care. Heidelberg: Springer; 2016. p. 1–346.
    1. Brandt J, Benedict RHB. Hopkins verbal learning test-revised: professional manual. Lutz: PAR; 2001.
    1. Benedict RHB, Schretlen D, Groninger L, Brandt J. Hopkins verbal learning test-revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol. 1998;12:43–55. doi: 10.1076/clin.12.1.43.1726.
    1. Shapiro AM, Benedict RHB, Schretlen D, Brandt J. Construct and concurrent validity of the Hopkins verbal learning test – revised. Clin Neuropsychol. 1999;13:348–358. doi: 10.1076/clin.13.3.348.1749.
    1. Daamen M, Raab M. Psychological assessments in physical exercise. In: Boecker H, Hillmann CH, Scheef L, Strüder HK, editors. Functional neuroimaging in exercise and sport sciences. New York: Springer; 2012. pp. 109–153.
    1. Rodewald K, Weisbrod M, Aschenbrenner S. Trail making test Langsteinbacher version - manual. 22. Mödling: Schuhfried GmbH; 2014.
    1. Aschenbrenner S, Tucha O, Lange M. Regensburger Wortflüssigkeits-test. Göttingen: Hogrefe; 2001.
    1. Kaiser S, Aschenbrenner S, Pfüller U, Roesch-Ely D, Weisbrod M, Debelak M. Manual response inhibition: Kurzbeschreibung INHIB. 22. Mödling: Schuhfried GmbH; 2012.
    1. Kaiser S, Aschenbrenner S, Pfüller U, Roesch-Ely D, Weisbrod M. Manual response inhibition test. Mödling: Schuhfried GmbH; 2012.
    1. Cheung YT, Foo YL, Shwe M, Tan YP, Fan G, Yong WS, et al. Minimal clinically important difference (MCID) for the functional assessment of cancer therapy: cognitive function (FACT-cog) in breast cancer patients. J Clin Epidemiol. 2014;67:811–820. doi: 10.1016/j.jclinepi.2013.12.011.
    1. Wagner L, Sweet J, Butt Z, Lai J, Cella D. Measuring patient self-reported cognitive function: development of the functional assessment of cancer ther- apy-cognitive function instrument. J Support Oncol. 2009;7:W32–W39.
    1. Cheung YT, Lim SR, Shwe M, Tan YP, Chan A. Psychometric properties and measurement equivalence of the english and chinese versions of the functional assessment of cancer therapy-cognitive in Asian patients with breast cancer. Value Health. 2013;16:1001–1013. doi: 10.1016/j.jval.2013.06.017.
    1. Scharhag-Rosenberger F, Becker T, Streckmann F, Schmidt K, et al. Studien zu körperlichem Training bei onkologischen Patienten: Empfehlungen zu den Erhebungsmethoden. Dtsch Z Sportmed. 2014;2014:304–313. doi: 10.5960/dzsm.2014.148.
    1. Arena R. Exercise Testing. In: Pescatello LS, Arena R, Riebe D, Thompson PD, editors. ACSM’s Guidlines for Exercise Testing and Prescription. 9. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkens; 2013. pp. 39–156.
    1. Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37:1019–1028. doi: 10.2165/00007256-200737120-00002.
    1. Scharhag-Rosenberger F, Schommer K. Die spiroergometrie in der sportmedizin. Dtsch Z Sportmed. 2013;64:362–366.
    1. Herrmann-Lingen C, Buss U, Snaith R. HADS-D. hospital anxiety and depression scale—deutsche version (3. Aktualisierte und neu normierte Auflage). 3rd edition. Göttingen: Hogrefe; 2011.
    1. Smets EMA, Garssen B, Bonke B, de Haes JCJM. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39:315–325. doi: 10.1016/0022-3999(94)00125-O.
    1. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Fayers P, Aaronson N, Bjordal K. EORTC QLQ-C30 scoring manual. Eortc. 2001;1–77. doi:2001/6136/001.
    1. Faul F, Erdfelder E, Lang A-G, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Borm GF, Fransen J, Lemmens WAJG. A simple sample size formula for analysis of covariance in randomized clinical trials. J Clin Epidemiol. 2007;60:1234–1238. doi: 10.1016/j.jclinepi.2007.02.006.
    1. Zimmer P, Oberste M, Bloch W, Schenk A, Joisten N, Hartig P, et al. Impact of aerobic exercise training during chemotherapy on cancer related cognitive impairments in patients suffering from acute myeloid leukemia or myelodysplastic syndrome - study protocol of a randomized placebo-controlled trial. Contemp Clin Trials. 2016;49:1–5. doi: 10.1016/j.cct.2016.05.007.
    1. Field A. Discovering statistics using IBM SPSS statistics: and sex and drugs and rock “n” roll. 4th editio. Los Angeles and London and New Delhi: Sage; 2013.
    1. Hayes AF. Introduction to meditaion, moderation, and conditional process analysis: a regression-based approach. 2nd editio. New York London: Guilford Press; 2018.
    1. Oberste M, Hartig P, Bloch W, Elsner B, Predel H-G, Ernst B, et al. Control Group Paradigms in Studies Investigating Acute Effects of Exercise on Cognitive Performance–An Experiment on Expectation-Driven Placebo Effects. Front Hum Neurosci. 2017:1–10. 10.3389/fnhum.2017.00600.
    1. Stothart CR, Simons DJ, Boot WR, Kramer AF. Is the effect of aerobic exercise on cognition a placebo effect? PLoS One. 2014;9:e109557. doi: 10.1371/journal.pone.0109557.
    1. Joly F, Noal S, Heutte N, Duclos B, Lange M, Longato N. Impact of antiangiogenic treatment on cognitive functions and fatigue in metastatic renal cancer patients. Eur J Cancer. 2013;49:598–768. doi: 10.1016/S0959-8049(13)70064-9.
    1. Murray PS, Holmes PV. An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept. 2011;2011:654085. doi: 10.1155/2011/654085.
    1. Zimmer Philipp, Bloch Wilhelm, Schenk Alexander, Oberste Max, Riedel Stefan, Kool Jan, Langdon Dawn, Dalgas Ulrik, Kesselring Jürg, Bansi Jens. High-intensity interval exercise improves cognitive performance and reduces matrix metalloproteinases-2 serum levels in persons with multiple sclerosis: A randomized controlled trial. Multiple Sclerosis Journal. 2017;24(12):1635–1644. doi: 10.1177/1352458517728342.
    1. Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293:2479–2486. doi: 10.1001/jama.293.20.2479.

Source: PubMed

3
Iratkozz fel