The Airways' Mechanical Stress in Lung Disease: Implications for COPD Pathophysiology and Treatment Evaluation

Pierachille Santus, Matteo Pecchiari, Francesco Tursi, Vincenzo Valenti, Marina Saad, Dejan Radovanovic, Pierachille Santus, Matteo Pecchiari, Francesco Tursi, Vincenzo Valenti, Marina Saad, Dejan Radovanovic

Abstract

The airway epithelium stretches and relaxes during the normal respiratory cycle, and hyperventilation exaggerates this effect, resulting in changes in lung physiology. In fact, stretching of the airways influences lung function and the secretion of airway mediators, which in turn may cause a potentially injurious inflammatory response. This aim of the present narrative review was to illustrate the current evidence on the importance of mechanical stress in the pathophysiology of lung diseases with a particular focus on chronic obstructive pulmonary disease (COPD) and to discuss how this may influence pharmacological treatment strategies. Overall, treatment selection should be tailored to counterpart the effects of mechanical stress, which influences inflammation both in asthma and COPD. The most suitable treatment approach between a long-acting β2-agonists/long-acting antimuscarinic-agonist (LABA/LAMA) alone or with the addition of inhaled corticosteroids should be determined based on the underlying mechanism of inflammation. Noteworthy, the anti-inflammatory effects of the glycopyrronium/indacaterol combination on hyperinflation and mucociliary clearance may decrease the rate of COPD exacerbations, and it may synergistically improve bronchodilation with a double action on both the cyclic adenosine monophosphate (cAMP) and the acetylcholine pathways.

Conflict of interest statement

PS reports research grants from Chiesi Farmaceutici, Air Liquide, Pfizer, Almirall, and Boehringer Ingelheim and honoraria for lectures and consultancy from AstraZeneca, Boehringer Ingelheim, Novartis, Guidotti, Berlin-Chemie, Mundipharma, Zambon Italia, and Valeas. DR received honoraria for lectures from Boehringer Ingelheim, AstraZeneca, and Neopharmed Gentili and personal fees for participating to advisory boards from AstraZeneca. MP, MS, VV, and FT declare no competing or financial interests.

Copyright © 2019 Pierachille Santus et al.

Figures

Figure 1
Figure 1
Inhalation treatment selection in COPD according to the underlying mechanism of inflammation. AW: airway flow.

References

    1. Thomas R. A., Norman J. C., Huynh T. T., Williams B., Bolton S. J., Wardlaw A. J. Mechanical stretch has contrasting effects on mediator release from bronchial epithelial cells, with a rho-kinase-dependent component to the mechanotransduction pathway. Respiratory Medicine. 2006;100(9):1588–1597. doi: 10.1016/j.rmed.2005.12.008.
    1. Tschumperlin D. J., Drazen J. M. Mechanical stimuli to airway remodeling. American Journal of Respiratory and Critical Care Medicine. 2001;164(2):S90–S94. doi: 10.1164/ajrccm.164.supplement_2.2106060.
    1. Tschumperlin D. J., Shively J. D., Kikuchi T., Drazen J. M. Mechanical stress triggers selective release of fibrotic mediators from bronchial epithelium. American Journal of Respiratory Cell and Molecular Biology. 2003;28(2):142–149. doi: 10.1165/rcmb.2002-0121OC.
    1. Grainge C. L., Lau L. C. K., Ward J. A., et al. Effect of bronchoconstriction on airway remodeling in asthma. New England Journal of Medicine. 2011;364(21):2006–2015. doi: 10.1056/NEJMoa1014350.
    1. Barnes N. C., Qiu Y.-S., Pavord I. D., et al. Antiinflammatory effects of salmeterol/fluticasone propionate in chronic obstructive lung disease. American Journal of Respiratory and Critical Care Medicine. 2006;173(7):736–743. doi: 10.1164/rccm.200508-1321OC.
    1. Cazzola M., Calzetta L., Puxeddu E., et al. Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells. Respiratory Research. 2016;17(1):p. 70. doi: 10.1186/s12931-016-0386-8.
    1. Buist A. S., Van Fleet D. L., Ross B. B. A comparison of conventional spirometric tests and the test of closing volume in an emphysema screening center. The American Review of Respiratory Disease. 1973;107(5):735–743.
    1. D’Angelo E., Pecchiari M., Gentile G. Dependence of lung injury on surface tension during low-volume ventilation in normal open-chest rabbits. Journal of Applied Physiology. 2007;102:174–182. doi: 10.1152/japplphysiol.00405.2006.
    1. Robertson B. Lung surfactant. In: Robertson B., VanGoulde L., Batenburg J., editors. Pulmonary Surfactant. Amsterdam, Netherlands: Elsevier; 1984.
    1. Pecchiari M., Radovanovic D., Santus P., D’Angelo E. Airway occlusion assessed by single breath N2 test and lung P-V curve in healthy subjects and COPD patients. Respiratory Physiology & Neurobiology. 2016;234:60–68. doi: 10.1016/j.resp.2016.09.006.
    1. Koo H.-K., Vasilescu D. M., Booth S., et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. The Lancet Respiratory Medicine. 2018;6(8):591–602. doi: 10.1016/S2213-2600(18)30196-6.
    1. Pecchiari M., Santus P., Radovanovic D., DʼAngelo E. Acute effects of long-acting bronchodilators on small airways detected in COPD patients by single-breath N2 test and lung P-V curve. Journal of Applied Physiology. 2017;123(5):1266–1275. doi: 10.1152/japplphysiol.00493.2017.
    1. Santus P., Buccellati C., Centanni S., et al. Bronchodilators modulate inflammation in chronic obstructive pulmonary disease subjects. Pharmacological Research. 2012;66(4):343–348. doi: 10.1016/j.phrs.2012.05.007.
    1. Bühling F., Lieder N., Kühlmann U. C., Waldburg N., Welte T. Tiotropium suppresses acetylcholine-induced release of chemotactic mediators in vitro. Respiratory Medicine. 2007;101(11):2386–2394. doi: 10.1016/j.rmed.2007.06.009.
    1. Bateman E. D., Rennard S., Barnes P. J., et al. Alternative mechanisms for tiotropium. Pulmonary Pharmacology & Therapeutics. 2009;22(6):533–542. doi: 10.1016/j.pupt.2009.06.002.
    1. Radovanovic D., Santus P., Blasi F., Mantero M. The evidence on tiotropium bromide in asthma: from the rationale to the bedside. Multidisciplinary Respiratory Medicine. 2017;12(1):p. 12. doi: 10.1186/s40248-017-0094-3.
    1. Profita M., Bonanno A., Montalbano A. M., et al. β2 long-acting and anticholinergic drugs control TGF-β1-mediated neutrophilic inflammation in COPD. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease. 2012;1822(7):1079–1089. doi: 10.1016/j.bbadis.2012.03.002.
    1. Anzalone G., Gagliardo R., Bucchieri F., et al. IL-17A induces chromatin remodeling promoting IL-8 release in bronchial epithelial cells: effect of Tiotropium. Life Sciences. 2016;152:107–116. doi: 10.1016/j.lfs.2016.03.031.
    1. Matthiesen S., Bahulayan A., Kempkens S., et al. Muscarinic receptors mediate stimulation of human lung fibroblast proliferation. American Journal of Respiratory Cell and Molecular Biology. 2006;35(6):621–627. doi: 10.1165/rcmb.2005-0343RC.
    1. Yamaya M., Nishimura H., Hatachi Y., et al. Inhibitory effects of tiotropium on rhinovirus infection in human airway epithelial cells. European Respiratory Journal. 2012;40(1):122–132. doi: 10.1183/09031936.00065111.
    1. Profita M., Albano G. D., Riccobono L., et al. Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology. 2014;219(5):392–401. doi: 10.1016/j.imbio.2014.01.004.
    1. Kistemaker L. E. M., Hiemstra P. S., Bos I. S. T., et al. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax. 2015;70(7):668–676. doi: 10.1136/thoraxjnl-2014-205731.
    1. Santus P., Radovanovic D., Mascetti S., et al. Effects of bronchodilation on biomarkers of peripheral airway inflammation in COPD. Pharmacological Research. 2018;133:160–169. doi: 10.1016/j.phrs.2018.05.010.
    1. Beeh K. M., Burgel P.-R., Franssen F. M. E., et al. How do dual long-acting bronchodilators prevent exacerbations of chronic obstructive pulmonary disease? American Journal of Respiratory and Critical Care Medicine. 2017;196(2):139–149. doi: 10.1164/rccm.201609-1794CI.
    1. Pieper M. P. The non-neuronal cholinergic system as novel drug target in the airways. Life Sciences. 2012;91(21-22):1113–1118. doi: 10.1016/j.lfs.2012.08.030.
    1. Cazzola M., Rogliani P., Matera M. G. Escalation and de-escalation of therapy in COPD: myths, realities and perspectives. Drugs. 2015;75(14):1575–1585. doi: 10.1007/s40265-015-0450-6.
    1. Miravitlles M., Anzueto A. A new two-step algorithm for the treatment of COPD. European Respiratory Journal. 2017;49(2) doi: 10.1183/13993003.02200-2016.1602200
    1. Kaplan A. Applying the wisdom of stepping down inhaled corticosteroids in patients with COPD: a proposed algorithm for clinical practice. International Journal of Chronic Obstructive Pulmonary Disease. 2015;10:2535–2548. doi: 10.2147/COPD.S93321.
    1. Calverley P. M. A., Magnussen H., Miravitlles M., Wedzicha J. A. Triple therapy in COPD: what we know and what we don’t. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2017;14(6):648–662. doi: 10.1080/15412555.2017.1389875.
    1. Vogelmeier C., Worth H., Buhl R., et al. Real-life inhaled corticosteroid withdrawal in COPD: a subgroup analysis of DACCORD. International Journal of Chronic Obstructive Pulmonary Disease. 2017;12:487–494. doi: 10.2147/COPD.S125616.
    1. Vogelmeier C. F., Gaga M., Aalamian-Mattheis M., CRYSTAL Study Investigators, et al. Efficacy and safety of direct switch to indacaterol/glycopyrronium in patients with moderate COPD: the CRYSTAL open-label randomised trial. Respiratory Research. 2017;18(1):p. 140. doi: 10.1186/s12931-017-0622-x.
    1. Rossi A., van der Molen T., del Olmo R., et al. INSTEAD: a randomised switch trial of indacaterol versus salmeterol/fluticasone in moderate COPD. European Respiratory Journal. 2014;44(6):1548–1556. doi: 10.1183/09031936.00126814.
    1. Rossi A., Guerriero M., Corrado A., OPTIMO/AIPO Study Group Withdrawal of inhaled corticosteroids can be safe in COPD patients at low risk of exacerbation: a real-life study on the appropriateness of treatment in moderate COPD patients (OPTIMO) Respiratory Research. 2014;15(1):p. 77. doi: 10.1186/1465-9921-15-77.
    1. Kaplan A., Chapman K. R., Anees S. M., et al. Real-life effectiveness of indacaterol-glycopyrronium after switching from tiotropium or salmeterol/fluticasone therapy in patients with symptomatic COPD: the POWER study. International Journal of Chronic Obstructive Pulmonary Disease. 2019;14:249–260. doi: 10.2147/COPD.S185485.
    1. Magnussen H., Disse B., Rodriguez-Roisin R., WISDOM Investigators, et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. New England Journal of Medicine. 2014;371(14):1285–1294. doi: 10.1056/NEJMoa1407154.
    1. Watz H., Tetzlaff K., Wouters E. F., et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the WISDOM trial. The Lancet Respiratory Medicine. 2016;4(5):390–398. doi: 10.1016/S2213-2600(16)00100-4.
    1. Chapman K. R., Hurst J. R., Frent S.-M., et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in patients with chronic obstructive pulmonary disease (SUNSET): a randomized, double-blind, triple-dummy clinical trial. American Journal of Respiratory and Critical Care Medicine. 2018;198(3):329–339. doi: 10.1164/rccm.201803-0405OC.
    1. Calzetta L., Rogliani P., Matera M. G., Cazzola M. A systematic review with meta-analysis of dual bronchodilation with LAMA/LABA for the treatment of stable COPD. Chest. 2016;149(5):1181–1196. doi: 10.1016/j.chest.2016.02.646.
    1. Aziz M. I. A., Tan L. E., Wu D. B.-C., et al. Comparative efficacy of inhaled medications (ICS/LABA, LAMA, LAMA/LABA and SAMA) for COPD: a systematic review and network meta-analysis. International Journal of Chronic Obstructive Pulmonary Disease. 2018;13:3203–3231. doi: 10.2147/COPD.S173472.
    1. Vestbo J., Anderson J. A., Calverley P. M. A., et al. Adherence to inhaled therapy, mortality and hospital admission in COPD. Thorax. 2009;64(11):939–943. doi: 10.1136/thx.2009.113662.
    1. Stanford R. H., Parker E. D., Reinsch T. K., Buikema A. R., Blauer-Peterson C. Assessment of COPD-related outcomes in patients initiating a once daily or twice daily ICS/LABA. Respiratory Medicine. 2019;150:1–7. doi: 10.1016/j.rmed.2019.01.019.
    1. Kerwin E., Ferguson G. T., Sanjar S., et al. Dual bronchodilation with indacaterol maleate/glycopyrronium bromide compared with umeclidinium bromide/vilanterol in patients with moderate-to-severe COPD: results from two randomized, controlled, cross-over studies. Lung. 2017;195(6):739–747. doi: 10.1007/s00408-017-0055-9.
    1. Di Marco F., Santus P., Scichilone N., et al. Symptom variability and control in COPD: advantages of dual bronchodilation therapy. Respiratory Medicine. 2017;125:49–56. doi: 10.1016/j.rmed.2017.03.001.

Source: PubMed

3
Iratkozz fel