The long-term effects of meteorological parameters on pertussis infections in Chongqing, China, 2004-2018

Yongbin Wang, Chunjie Xu, Jingchao Ren, Yingzheng Zhao, Yuchun Li, Lei Wang, Sanqiao Yao, Yongbin Wang, Chunjie Xu, Jingchao Ren, Yingzheng Zhao, Yuchun Li, Lei Wang, Sanqiao Yao

Abstract

Evidence on the long-term influence of climatic variables on pertussis is limited. This study aims to explore the long-term quantitative relationship between weather variability and pertussis. Data on the monthly number of pertussis cases and weather parameters in Chongqing in the period of 2004-2018 were collected. Then, we used a negative binomial multivariable regression model and cointegration testing to examine the association of variations in monthly meteorological parameters and pertussis. Descriptive statistics exhibited that the pertussis incidence rose from 0.251 per 100,000 people in 2004 to 3.661 per 100,000 persons in 2018, and pertussis was a seasonal illness, peaked in spring and summer. The results from the regression model that allowed for the long-term trends, seasonality, autoregression, and delayed effects after correcting for overdispersion showed that a 1 hPa increment in the delayed one-month air pressure contributed to a 3.559% (95% CI 0.746-6.293%) reduction in the monthly number of pertussis cases; a 10 mm increment in the monthly aggregate precipitation, a 1 °C increment in the monthly average temperature, and a 1 m/s increment in the monthly average wind velocity resulted in 3.641% (95% CI 0.960-6.330%), 19.496% (95% CI 2.368-39.490%), and 3.812 (95% CI 1.243-11.690)-fold increases in the monthly number of pertussis cases, respectively. The roles of the mentioned weather parameters in the transmission of pertussis were also evidenced by a sensitivity analysis. The cointegration testing suggested a significant value among variables. Climatic factors, particularly monthly temperature, precipitation, air pressure, and wind velocity, play a role in the transmission of pertussis. This finding will be of great help in understanding the epidemic trends of pertussis in the future, and weather variability should be taken into account in the prevention and control of pertussis.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Time series plot displaying the monthly pertussis incidence and six climatic variables after standardized transformation. (A) Aggregate precipitation; (B) Aggregate sunshine hours; (C) Average wind velocity; (D) Average temperature; (E) Average relative humidity; (F) Average air pressure.
Figure 2
Figure 2
Negative binomial regression results of climatic variables correlated with the transmission of pertussis. (A) Aggregate precipitation; (B) Average temperature; (C) Aggregate sunshine hours; (D) Average relative humidity; (E) Average air pressure; (F) Average wind velocity.
Figure 3
Figure 3
Partial autocorrelation function (PACF) plot for the seasonally differenced series. It was seen that there were two local maximum values at lag 1–2 months. So the autoregressive orders were considered to be 2.
Figure 4
Figure 4
Comparison chart between the observed values and the fitted values based on the climatic variables.

References

    1. Zhang Y, et al. Association of sociodemographic factors and internet query data with pertussis infections in Shandong, China. Epidemiol. Infect. 2019;147:e302. doi: 10.1017/s0950268819001924.
    1. WHO Pertussis vaccines: WHO position paper, August 2015–Recommendations. Vaccine. 2016;34:1423–1425. doi: 10.1016/j.vaccine.2015.10.136.
    1. Wang Y, et al. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. PLoS ONE. 2018;13:e0208404. doi: 10.1371/journal.pone.0208404.
    1. Zeng Q, et al. Time series analysis of temporal trends in the pertussis incidence in Mainland China from 2005 to 2016. Sci. Rep. 2016;6:32367. doi: 10.1038/srep32367.
    1. Nnaji CA, Shey MS, Adetokunboh OO, Wiysonge CS. Immunogenicity and safety of fractional dose yellow fever vaccination: a systematic review and meta-analysis. Vaccine. 2020;38:1291–1301. doi: 10.1016/j.vaccine.2019.12.018.
    1. WHO. Pertussis: Immunization, Vaccines and Biologicals. . Accessed on 4 Sept 2020. (2020).
    1. Huang H, et al. Epidemiological features of pertussis resurgence based on community populations with high vaccination coverage in China. Epidemiol. Infect. 2015;143:1950–1956. doi: 10.1017/s095026881400260x.
    1. Saadatian-Elahi M, et al. Pertussis: Biology, epidemiology and prevention. Vaccine. 2016;34:5819–5826. doi: 10.1016/j.vaccine.2016.10.029.
    1. Brosio F, et al. Impact of Pertussis on the Italian population: analysis of hospital discharge records in the period 2001–2014. Int. J. Infect. Dis. 2020;91:143–148. doi: 10.1016/j.ijid.2019.10.027.
    1. Almaw L, Bizuneh H. Pertussis outbreak investigation in Janamora district, Amhara Regional State, Ethiopia: a case-control study. Pan Afr. Med. J. 2019;34:65. doi: 10.11604/pamj.2019.34.65.19612.
    1. He H, Yao P, Zhou Y, Deng X, Pan J. Is pertussis infection neglected in China? Evidence from a Seroepidemiology Survey in Zhejiang, an Eastern Province of China. PLoS ONE. 2016;11:e0155965. doi: 10.1371/journal.pone.0155965.
    1. Yao N, Zeng Q, Wang Q. Seroepidemiology of diphtheria and pertussis in Chongqing, China: serology-based evidence of Bordetella pertussis infection. Public Health. 2018;156:60–66. doi: 10.1016/j.puhe.2017.12.009.
    1. Zhang Q, et al. Seroprevalence of antibodies to pertussis and diphtheria among healthy adults in China. J. Infect. 2011;63:441–446. doi: 10.1016/j.jinf.2011.07.018.
    1. Zhang Y, et al. Using big data to predict pertussis infections in Jinan city, China: a time series analysis. Int. J. Biometeorol. 2019;64:95–104. doi: 10.1007/s00484-019-01796-w.
    1. Yi L, et al. The impact of climate variability on infectious disease transmission in China: current knowledge and further directions. Environ. Res. 2019;173:255–261. doi: 10.1016/j.envres.2019.03.043.
    1. Shi F, et al. Exploring the dynamics of hemorrhagic fever with renal syndrome incidence in East China through seasonal autoregressive integrated moving average models. Infect. Drug Resis. 2020;13:2465–2475. doi: 10.2147/idr.s250038.
    1. Lu JY, et al. Effect of meteorological factors on scarlet fever incidence in Guangzhou City, Southern China, 2006–2017. Sci. Total Environ. 2019;663:227–235. doi: 10.1016/j.scitotenv.2019.01.318.
    1. Koh GC, Hawthorne G, Turner AM, Kunst H, Dedicoat M. Tuberculosis incidence correlates with sunshine: an ecological 28-year time series study. PLoS ONE. 2013;8:e57752. doi: 10.1371/journal.pone.0057752.
    1. Xiang J, et al. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ. Res. 2017;153:17–26. doi: 10.1016/j.envres.2016.11.009.
    1. Wei Y, et al. Meteorological factors and risk of hemorrhagic fever with renal syndrome in Guangzhou, southern China, 2006–2015. PLoS Negl. Trop. Dis. 2018;12:e0006604. doi: 10.1371/journal.pntd.0006604.
    1. Hao Y, et al. Effects of ambient temperature on bacillary dysentery: A multi-city analysis in Anhui Province, China. Sci. Total Environ. 2019;671:1206–1213. doi: 10.1016/j.scitotenv.2019.03.443.
    1. Cao LT, et al. Relationship of meteorological factors and human brucellosis in Hebei province, China. Sci. Total Environ. 2020;703:135491. doi: 10.1016/j.scitotenv.2019.135491.
    1. Wei J, et al. The effect of meteorological variables on the transmission of hand, foot and mouth disease in four major cities of Shanxi province, China: a time series data analysis (2009–2013) PLoS Negl. Trop. Dis. 2015;9:e0003572. doi: 10.1371/journal.pntd.0003572.
    1. Huang X, et al. Assessing the social and environmental determinants of pertussis epidemics in Queensland, Australia: a Bayesian spatio-temporal analysis. Epidemiol. Infect. 2017;145:1221–1230. doi: 10.1017/s0950268816003289.
    1. Blackwood JC, Cummings DA, Broutin H, Iamsirithaworn S, Rohani P. The population ecology of infectious diseases: pertussis in Thailand as a case study. Parasitology. 2012;139:1888–1898. doi: 10.1017/s0031182012000431.
    1. Zhang Y, et al. Association of weather variability with resurging pertussis infections among different age groups: a non-linear approach. Sci. Total Environ. 2020;719:137510. doi: 10.1016/j.scitotenv.2020.137510.
    1. Zhang WY, et al. Climate variability and hemorrhagic fever with renal syndrome transmission in Northeastern China. Environ. Health Perspect. 2010;118:915–920. doi: 10.1289/ehp.0901504.
    1. Xiao Y, et al. The influence of meteorological factors on tuberculosis incidence in Southwest China from 2006 to 2015. Sci. Rep. 2018;8:10053. doi: 10.1038/s41598-018-28426-6.
    1. Zhang D, et al. The relationship between meteorological factors and mumps based on Boosted regression tree model. Sci. Total Environ. 2019;695:133758. doi: 10.1016/j.scitotenv.2019.133758.
    1. National Health Commission of the People’s Republic of China. Diagnostic Criteria for Pertussis, 2007. . Accessed on 21 Sept 2020.
    1. Li X, Ning W, Ding G, Li X, Xue X. The relationship between meteorological factors and the risk of bacillary dysentery in the highest incidence area of Hunan Province, China. Weather. 2018;4:148–153.
    1. Wang C, Jiang B, Fan J, Wang F, Liu Q. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Asia Pac. J. Public Health. 2014;26:48–57. doi: 10.1177/1010539513490195.
    1. Kamiya H, et al. Transmission of Bordetella holmesii during pertussis outbreak, Japan. Emerg. Infect. Dis. 2012;18:1166–1169. doi: 10.3201/eid1807.120130.
    1. Zurr AF, et al. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010;1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x.
    1. Hilbe JM. Poisson Regression in Negative Binomial Regression. Cambridge: Cambridge University Press; 2011. pp. 77–141.
    1. Zhang X, et al. A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition. Int. J. Environ. Res. Public Health. 2018 doi: 10.3390/ijerph15051032.
    1. Engle R, Granger C. Cointegration and error-correction: representation estimation and testing. Econometrica. 1987;55:251–276. doi: 10.2307/1913236.
    1. Li Z, et al. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Infect. Drug Resist. 2019;12:1011–1020. doi: 10.2147/idr.s190418.
    1. Wu W, et al. Comparison of two hybrid models for forecasting the incidence of hemorrhagic fever with renal syndrome in Jiangsu Province, China. PLoS ONE. 2015;10:e0135492. doi: 10.1371/journal.pone.0135492.
    1. Schmidt MA, Kurosky SK, Mullooly JP, Chun C, Weinmann S. A ten-year case-control study of passive smoke exposure as a risk factor for pertussis in children. Perm. J. 2015;19:59–63. doi: 10.7812/tpp/14-233.
    1. Sonnenschein-van der Voort AM, et al. Air pollution, fetal and infant tobacco smoke exposure, and wheezing in preschool children: a population-based prospective birth cohort. Environ. Health. 2012;11:91. doi: 10.1186/1476-069x-11-91.
    1. Duijts L, et al. Fetal exposure to maternal and paternal smoking and the risks of wheezing in preschool children: the Generation R Study. Chest. 2012;141:876–885. doi: 10.1378/chest.11-0112.
    1. Li M, et al. System dynamics modeling of public health services provided by China CDC to control infectious and endemic diseases in China. Infect. Drug Resist. 2019;12:613–625. doi: 10.2147/idr.s185177.
    1. Liu Z, et al. Severe Bordetella pertussis infection and vaccine issue in Chongqing, from 2012 to 2018. Int. J. Infect. Dis. 2019;84:102–108. doi: 10.1016/j.ijid.2019.05.014.
    1. Vilajeliu A, Garcia-Basteiro AL, Bayas JM. Protecting newborns against pertussis: the value of vaccinating during pregnancy. Expert Rev. Vaccines. 2015;14:1051–1053. doi: 10.1586/14760584.2015.1050386.
    1. Giorgio F, Antonio C, Maria AC. T-cell immune responses to Bordetella pertussis infection and vaccination. Pathogens Dis. 2015;73:1–9.
    1. Di Mattia G, et al. Pertussis: new preventive strategies for an old disease. Paediatr. Respir. Rev. 2018 doi: 10.1016/j.prrv.2018.03.011.
    1. van Twillert I, et al. Age related differences in dynamics of specific memory B cell populations after clinical pertussis infection. PLoS ONE. 2014;9:e85227. doi: 10.1371/journal.pone.0085227.
    1. Shakib JH, et al. Pertussis antibodies in postpartum women and their newborns. J. Perinatol. 2010;30:93–97. doi: 10.1038/jp.2009.138.
    1. Healy CM, et al. Prevalence of pertussis antibodies in maternal delivery, cord, and infant serum. J. Infect. Dis. 2004;190:335–340. doi: 10.1086/421033.
    1. Mooi FR, Van Der Maas NA, De Melker HE. Pertussis resurgence: waning immunity and pathogen adaptation—two sides of the same coin. Epidemiol. Infect. 2014;142:685–694. doi: 10.1017/s0950268813000071.
    1. Lancet T. Vaccine scandal and confidence crisis in China. Lancet. 2018;392:360. doi: 10.1016/s0140-6736(18)31695-7.
    1. Bhatti MM, et al. Eight-year review of bordetella pertussis testing reveals seasonal pattern in the United States. J. Pediatr. Infect. Dis. Soc. 2017;6:91–93. doi: 10.1093/jpids/piv079.
    1. Gonfiantini MV, et al. Epidemiology of pertussis in Italy: disease trends over the last century. Euro Surveill. 2014;19:20921. doi: 10.2807/1560-7917.ES2014.19.40.20921.
    1. De Greeff SC, et al. Seasonal patterns in time series of pertussis. Epidemiol. Infect. 2009;137:1388–1395. doi: 10.1017/s0950268809002489.
    1. Zhang YZ, et al. Monitoring pertussis infections using internet search queries. Sci. Rep. 2017;7:10437. doi: 10.1038/S41598-017-11195-Z.
    1. Yang Q, et al. The relationship between meteorological factors and mumps incidence in Guangzhou, China, 2005–2012. Hum. Vaccines Immunother. 2014;10:2421–2432. doi: 10.4161/hv.29286.
    1. Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations: a review. Sci. Total Environ. 2004;326:151–180. doi: 10.1016/j.scitotenv.2003.11.021.
    1. Zhong X, Qi J, Li H, Dong L, Gao D. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos. Environ. 2016;140:506–513. doi: 10.1016/j.atmosenv.2016.06.034.
    1. Lighthart B, Mohr AJ. Estimating downwind concentrations of viable airborne microorganisms in dynamic atmospheric conditions. Appl. Environ. Microbiol. 1987;53:1580–1583. doi: 10.1128/AEM.53.7.1580-1583.1987.
    1. Yang ZR, et al. Characteristics on spatial and temporal distribution as well as the driving effect of meteorological factors on brucellosis in Datong city, Shanxi province, 2005–2015. Zhonghua Liu Xing Bing Xue Za Zhi. 2018;39:1165–1171. doi: 10.3760/cma.j.issn.0254-6450.2018.09.005.
    1. Tang JW, Li Y, Eames I, Chan PK, Ridgway GL. Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. J. Hosp. Infect. 2006;64:100–114. doi: 10.1016/j.jhin.2006.05.022.
    1. Li R, et al. The short-term association between meteorological factors and mumps in Jining, China. Sci. Total Environ. 2016;568:1069–1075. doi: 10.1016/j.scitotenv.2016.06.158.
    1. Hellberg RS, Chu E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit. Rev. Microbiol. 2016;42:548–572. doi: 10.3109/1040841x.2014.972335.
    1. Duan Y, et al. Effects of meteorological factors on incidence of scarlet fever during different periods in different districts of China. Sci. Total Environ. 2017;581–582:19–24. doi: 10.1016/j.scitotenv.2017.01.010.
    1. Kaczmarek MC, Ware RS, Nimmo GR, Robson JM, Lambert SB. Pertussis seasonality evident in polymerase chain reaction and serological testing data, Queensland, Australia. J. Pediatr. Infect. Dis. Soc. 2016;5:214–217. doi: 10.1093/jpids/piu144.
    1. Gosai A, Salinger J, Dirks K. Climate and respiratory disease in Auckland, New Zealand. Aust. N. Z. J. Public Health. 2009;33:521–526. doi: 10.1111/j.1753-6405.2009.00447.x.
    1. Du Z, et al. Weather effects on hand, foot, and mouth disease at individual level: a case-crossover study. BMC Infect. Dis. 2019;19:1029. doi: 10.1186/s12879-019-4645-4.
    1. Duan Y, et al. Impact of meteorological changes on the incidence of scarlet fever in Hefei City, China. Int. J. Biometeorol. 2016;60:1543–1550. doi: 10.1007/s00484-016-1145-8.
    1. Lin S, et al. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology. 2009;20:738–746. doi: 10.1097/EDE.0b013e3181ad5522.
    1. Song X, et al. The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China. Sci. Total Environ. 2018;615:1499–1505. doi: 10.1016/j.scitotenv.2017.09.108.
    1. Bai Y, et al. Effects of Climate and Rodent Factors on Hemorrhagic Fever with Renal Syndrome in Chongqing, China, 1997–2008. PLoS ONE. 2015;10:e0133218. doi: 10.1371/journal.pone.0133218.
    1. Murayama T, Hewlett EL, Maloney NJ, Justice JM, Moss J. Effect of temperature and host factors on the activities of pertussis toxin and Bordetella adenylate cyclase. Biochemistry. 1994;33:15293–15297. doi: 10.1021/bi00255a010.
    1. Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ. Int. 2016;86:14–23. doi: 10.1016/j.envint.2015.09.007.
    1. Mahara G, et al. The association between environmental factors and scarlet fever incidence in Beijing region: using GIS and spatial regression models. Int. J. Environ. Res. Public Health. 2016 doi: 10.3390/ijerph13111083.
    1. Dangi T, et al. Influenza virus genotypes circulating in and around Lucknow, Uttar Pradesh, India, during post pandemic period, August 2010–September 2012. Indian J. Med. Res. 2014;139:418–426.
    1. Hu W, et al. Meteorological factors and the incidence of mumps in Fujian Province, China, 2005–2013: non-linear effects. Sci. Total Environ. 2018;619–620:1286–1298. doi: 10.1016/j.scitotenv.2017.11.108.
    1. Jian L, Zhao Y, Zhu YP, Zhang MB, Bertolatti D. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 2012;426:336–345. doi: 10.1016/j.scitotenv.2012.03.025.
    1. Imai C, Armstrong B, Chalabi Z, Mangtani P, Hashizume M. Time series regression model for infectious disease and weather. Environ. Res. 2015;142:319–327. doi: 10.1016/j.envres.2015.06.040.

Source: PubMed

3
Iratkozz fel