The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake?

Marko Stupin, Aleksandar Kibel, Ana Stupin, Kristina Selthofer-Relatić, Anita Matić, Martina Mihalj, Zrinka Mihaljević, Ivana Jukić, Ines Drenjančević, Marko Stupin, Aleksandar Kibel, Ana Stupin, Kristina Selthofer-Relatić, Anita Matić, Martina Mihalj, Zrinka Mihaljević, Ivana Jukić, Ines Drenjančević

Abstract

Physical activity has a beneficial effect on systemic hemodynamics, physical strength, and cardiac function in cardiovascular (CV) patients. Potential beneficial effects of dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on hemorheology, vascular function, inflammation and potential to improve physical performance as well as other CV parameters are currently investigated. Recent meta-analysis suggests no effect of n-3 PUFA supplementation on CV function and outcomes of CV diseases. On the other hand, some studies support beneficial effects of n-3 PUFAs dietary intake on CV and muscular system, as well as on immune responses in healthy and in CV patients. Furthermore, the interaction of exercise and dietary n-3 PUFA intake is understudied. Supplementation of n-3 PUFAs has been shown to have antithrombotic effects (by decreasing blood viscosity, decreasing coagulation factor and PAI-1 levels and platelet aggregation/reactivity, enhancing fibrinolysis, but without effects on erythrocyte deformability). They decrease inflammation by decreasing IL-6, MCP-1, TNFα and hsCRP levels, expression of endothelial cell adhesion molecules and significantly affect blood composition of fatty acids. Treatment with n-3 PUFAs enhances brachial artery blood flow and conductance during exercise and enhances microvascular post-occlusive hyperemic response in healthy humans, however, the effects are unknown in cardiovascular patients. Supplementation of n-3 PUFAs may improve anaerobic endurance and may modulate oxygen consumption during intense exercise, may increase metabolic capacity, enhance endurance capacity delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function in humans and animal models. In addition, n-3 PUFAs have anti-inflammatory and anti-nociceptive effects and may attenuate delayed-onset muscle soreness and muscle stiffness, and preserve joint mobility. On the other hand, effects of n-3 PUFAs were variably observed in men and women and they vary depending on dietary protocol, type of supplementation and type of sports activity undertaken, both in healthy and cardiovascular patients. In this review we will discuss the physiological effects of n-3 PUFA intake and exercise on hemorheology, microvascular function, immunomodulation and inflammation and physical performance in healthy persons and in cardiovascular diseases; elucidating if there is an interaction of exercise and diet.

Keywords: cardiovascular; endothelium; exercise; hemorheology; inflammation; microcirculation; muscle; n-3 PUFAs.

Figures

FIGURE 1
FIGURE 1
Algorithms of literature search. From literature search it is evident that a respective number of studies investigated the effect of n-3 PUFA supplementation on hemorheology, vascular/endothelial function/microcirculation, inflammation, and skeletomuscular system in both cardiovascular patients and healthy population (A). However, a significantly smaller number of studies dealt with the effect of n-3 PUFA supplementation in the form of functional food (C), or the potential combined interaction effect of n-3 PUFAs and regular exercise on the mentioned parameters (B). Importantly, there is no available data (a total of 5 search results) on the combined effect of n-3 PUFA supplementation in the form of functional foods and regular aerobic exercise on hemorheology, vascular/endothelial function/microcirculation and inflammation in both healthy population and CV patients (D).
FIGURE 2
FIGURE 2
Metabolism of n-3 and n-6 PUFAs and the most important eicosanoids. The present figure summarizes the metabolism of n-3 PUFAs and n-6 PUFAs by cyclooxygenases (COX), lipoxygenase (LOX), and cytochrome P450.
FIGURE 3
FIGURE 3
Schematic representation of potential antithrombotic effects of n-3 PUFAs and exercise. Potential effects of n-3 PUFAs may include influence on specific coagulation factors of the coagulation cascade (with antithrombotic tendency), effects on arachidonic acid metabolites, blood rheology and (directly and indirectly) platelet aggregation (leading to a decrease in the latter). Other unknown or insufficiently investigated effects might also be involved.
FIGURE 4
FIGURE 4
Functional pathways and molecular mechanisms mediating interaction between n-3 PUFAs and exercise on the one side and endothelial function on the other. The present figure summarizes the results of studies conducted on experimental animals, healthy subjects, and patients (CV, diabetic, obese) on the effect of n-3 PUFA supplementation or regular exercise on endothelial function (NO bioavailability, oxidative stress level and inflammation), vascular function (functional vascular experiments in both macro- and micro-circulation), and traditional cardiovascular risk factors (e.g., blood pressure, serum triglyceride level). It is evident that studies on the effect of regular exercise on the abovementioned parameters provided more uniform results and yielded clear conclusions on the beneficial effect of regular exercise on CV health. On the other hand, studies on the effect on n-3 PUFAs on vascular and endothelial function, especially studies in patients and healthy subjects, provided very divergent and inconclusive results, evidently due to the heterogeneity in experimental design with the emphasis on different form, dose and duration of n-3 PUFA supplementation used in these studies. There is a paucity of data on the combined effect of n-3 PUFAs and regular exercise on CV function in general.
FIGURE 5
FIGURE 5
Schematic representation of potential immune mechanisms affected by n-3 PUFAs and exercise in CV patients (outcomes). The effect of exercise and n-3 PUFAs on NF-κB transcriptional activity. Effect of exercise is dependent on the type and intensity level of physical activity. An acute bout of exercise activates myocardial NF-κB and increases toll-like receptor 4 signaling leading to inflammation while moderate exercise reduces NF-κB signaling and activates the SIRT1-AMPK-PGC1α axis, resulting in decreased inflammation and reduced muscle loss.

References

    1. Abdelhamid A. S., Brown T. J., Brainard J. S., Biswas P., Thorpe G. C., Moore H. J., et al. (2018). Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 7:CD003177. 10.1002/14651858.CD003177.pub3
    1. Afonina I. S., Zhong Z., Karin M., Beyaert R. (2017). Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol. 18 861–869. 10.1038/ni.3772
    1. Albracht-Schulte K., Kalupahana N. S., Ramalingam L., Wang S., Rahman S. M., Robert-McComb J., et al. (2018). Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J. Nutr. Biochem. 58 1–16. 10.1016/j.jnutbio.2018.02.012
    1. Ambrozova G., Pekarova M., Lojek A. (2010). Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages. Eur. J. Nutr. 49 133–139. 10.1007/s00394-009-0057-3
    1. Andrade P. M. M., Ribeiro B. G., Bozza M. T., Costa Rosa L. F. B., do Carmo M. G. T. (2007). Effects of the fish-oil supplementation on the immune and inflammatory responses in elite swimmers. Prostaglandins Leukot. Essent. Fatty Acids 77 139–145. 10.1016/j.plefa.2007.08.010
    1. Apolinário L. M., De Carvalho S. C., Santo Neto H., Marques M. J. (2015). Long-term therapy with omega-3 ameliorates myonecrosis and benefits skeletal muscle regeneration in mdx mice. Anat. Rec. 298 1589–1596. 10.1002/ar.23177
    1. Armah C. K., Jackson K. G., Doman I., James L., Cheghani F., Minihane A. M. (2008). Fish oil fatty acids improve postprandial vascular reactivity in healthy men. Clin. Sci. 114 679–686. 10.1042/CS20070277
    1. Armstrong R. B., Warren G. L., Warren J. A. (1991). Mechanisms of exercise-induced muscle fibre injury. Sport. Med. 12 184–207. 10.2165/00007256-199112030-00004
    1. Auger C., Said A., Nguyen P. N., Chabert P., Idris-khodja N., Schini-kerth V. B. (2016). Potential of food and natural products to promote endothelial and vascular health. J. Cardiovasc. Pharmacol. 68 11–18. 10.1097/fjc.0000000000000382
    1. Ayre K. J., Hulbert A. J. (1997). Dietary fatty acid profile affects endurance in rats. Lipids 32 1265–1270. 10.1007/s11745-006-0162-5
    1. Baillie R. A., Takada R., Nakamura M., Clarke S. D. (1999). Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: a mechanism for decreased body fat deposition. Prostaglandins Leukot. Essent. Fatty Acids 60 351–356. 10.1016/s0952-3278(99)80011-8
    1. Balan M., Locke M. (2011). Acute exercise activates myocardial nuclear factor kappa B. Cell Stress Chaperones 16 105–111. 10.1007/s12192-010-0217-7
    1. Balvers M. G. J., Verhoeckx K. C. M., Plastina P., Wortelboer H. M., Meijerink J., Witkamp R. F. (2010). Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801 1107–1114. 10.1016/j.bbalip.2010.06.006
    1. Barbeau P.-A., Holloway T. M., Whitfield J., Baechler B. L., Quadrilatero J., van Loon L. J. C., et al. (2017). α-Linolenic acid and exercise training independently, and additively, decrease blood pressure and prevent diastolic dysfunction in obese Zucker rats. J. Physiol. 595 4351–4364. 10.1113/JP274036
    1. Benquet C., Krzystyniak K., Savard R., Guertin F., Oth D., Fournier M. (1994). Modulation of exercise-induced immunosuppression by dietary polyunsaturated fatty acids in mice. J. Toxicol. Environ. Health 43 225–237. 10.1080/15287399409531917
    1. Bhardwaj R., Dod H., Sandhu M. S., Bedi R., Dod S., Konat G., et al. (2018). Acute effects of diets rich in almonds and walnuts on endothelial function. Indian Heart J. 70 497–501. 10.1016/j.ihj.2018.01.030
    1. Biltagi M. A., Baset A. A., Bassiouny M., Kasrawi M., Al, Attia M. (2009). Omega-3 fatty acids, vitamin C and Zn supplementation in asthmatic children: a randomized self-controlled study. Acta Paediatr. 98 737–742. 10.1111/j.1651-2227.2008.01213.x
    1. Birk G., Dawson E., Batterham A., Atkinson G., Cable T., Thijssen D. H., et al. (2012). Effects of exercise intensity on flow mediated dilation in healthy humans. Int. J. Sports Med. 34 409–414. 10.1055/s-0032-1323829
    1. Black K. E., Witard O. C., Baker D., Healey P., Lewis V., Tavares F., et al. (2018). Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players. Eur. J. Sport Sci. 18 1357–1367. 10.1080/17461391.2018.1491626
    1. Black M. A., Green D. J., Cable N. T. (2008). Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels. J. Physiol. 586 3511–3524. 10.1113/jphysiol.2008.153742
    1. Bogdanovskaya N. V., Kotsuruba A. V., Golubenko A. V. (2016). Induction of oxidative and nitrosative stress in boys in adapting to physical stress during training and competitive periods. Fiziol. Zh. 62 47–56. 10.15407/fz62.02.047
    1. Bourre J. M. (1989). Nature, origin and role of fatty acids of the nervous system: an essential fatty acid, an alpha-linolenic acid, changing the structure and the cerebral function. Bull. Acad. Natl. Med. 173 1137–1148. discussion 1148-51,
    1. Bruckner G., Webb P., Greenwell L., Chow C., Richardson D. (1987). Fish oil increases peripheral capillary blood cell velocity in humans. Atherosclerosis 66 237–245. 10.1016/0021-9150(87)90067-0
    1. Bruunsgaard H. (2005). Physical activity and modulation of systemic low-level inflammation. J. Leukoc. Biol. 78 819–835. 10.1189/jlb.0505247
    1. Calder P. C. (2006). n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83 1505S–1519S. 10.1093/ajcn/83.6.1505S
    1. Calder P. C. (2012). Mechanisms of action of (n-3) fatty acids. J. Nutr. 142 592S–599S. 10.3945/jn.111.155259
    1. Calder P. C. (2017). Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans. 45 1105–1115. 10.1042/BST20160474
    1. Calvo M. J., Martínez M. S., Torres W., Chávez-Castillo M., Luzardo E., Villasmil N., et al. (2017). Omega-3 polyunsaturated fatty acids and cardiovascular health: a molecular view into structure and function. Vessel Plus 1 116–128. 10.20517/2574-1209.2017.14
    1. Casanova M. A., Medeiros F., Trindade M., Cohen C., Neves M. F. (2016). Omega-3 fatty acids supplementation improves endothelial function and arterial stiffness in hypertensive patients with hypertriglyceridemia and high cardiovascular risk. J. Am. Soc. Hypertens. 11 10–19. 10.1016/j.jash.2016.10.004
    1. Castillero E., Martín A. I., López-Menduiña M., Villanúa M. A., López-Calderón A. (2009). Eicosapentaenoic acid attenuates arthritis-induced muscle wasting acting on atrogin-1 and on myogenic regulatory factors. Am. J. Physiol. Integr. Comp. Physiol. 297 R1322–R1331. 10.1152/ajpregu.00388.2009
    1. Chen X., Pan Z., Fang Z., Lin W., Wu S., Yang F., et al. (2018). Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J. Neuroinflammation 15:310. 10.1186/s12974-018-1345-8
    1. Chiurchiù V., Leuti A., Dalli J., Jacobsson A., Battistini L., Maccarrone M., et al. (2016). Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci. Transl. Med. 8:353ra111. 10.1126/scitranslmed.aaf7483
    1. Clarkson P., Montgomery H. E., Mullen M. J., Donald A. E., Powe A. J., Bull T., et al. (1999). Exercise training enhances endothelial function in young men. J. Am. Coll. Cardiol. 33 1379–1385. 10.1016/s0735-1097(99)00036-4
    1. Colberg S. R., Stansberry K. B., McNitt P. M., Vinik A. I. (2002). Chronic exercise is associated with enhanced cutaneous blood flow in type 2 diabetes. J. Diabetes Complications 16 139–145. 10.1016/s1056-8727(01)00222-7
    1. Corder K. E., Newsham K. R., McDaniel J. L., Ezekiel U. R., Weiss E. P. (2016). Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J. Sports Sci. Med. 15 176–183.
    1. Coussens L. M., Werb Z. (2002). Inflammation and cancer. Nature 420 860–867. 10.1038/nature01322
    1. Cristi-Montero C., Sánchez-Collado P., Veneroso C., Cuevas M. J., González-Gallego J. (2012). Efecto del ejercicio agudo sobre la expresión del receptor tipo Toll-4 y los mecanismos inflamatorios en corazón de rata. Rev. Med. Chil. 140 1282–1288. 10.4067/S0034-98872012001000007
    1. Da Boit M., Hunter A. M., Gray S. R. (2017). Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance. Metabolism 66 45–54. 10.1016/j.metabol.2016.10.007
    1. Dátilo M. N., Sant’Ana M. R., Formigari G. P., Rodrigues P. B., de Moura L. P., da Silva A. S. R., et al. (2018). Omega-3 from flaxseed oil protects obese mice against diabetic retinopathy through GPR120 receptor. Sci. Rep. 8:14318. 10.1038/s41598-018-32553-5
    1. Demaison L., Blet J., Sergiel J. P., Gregoire S., Argaud D. (2000). Effect of dietary polyunsaturated fatty acids on contractile function of hearts isolated from sedentary and trained rats. Reprod. Nutr. Dev. 40 113–125. 10.1051/rnd:2000124
    1. Den Ruijter H. M., Berecki G., Opthof T., Verkerk A. O., Zock P. L., Coronel R. (2007). Pro- and antiarrhythmic properties of a diet rich in fish oil. Cardiovasc. Res. 73 316–325. 10.1016/j.cardiores.2006.06.014
    1. DiLorenzo F. M., Drager C. J., Rankin J. W. (2014). Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise. J. Strength Cond. Res. 28 2768–2774. 10.1519/JSC.0000000000000617
    1. Drenjančević I., Kralik G., Kralik Z., Mihalj M., Stupin A., Novak S., et al. (2017). “The effect of dietary intake of Omega-3 polyunsaturated fatty acids on cardiovascular health: revealing potentials of functional food,” in Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine, ed. Shiomi N. (London: IntechOpen Limited; ).
    1. Edholm P., Strandberg E., Kadi F. (2017). Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet. J. Appl. Physiol. 123 190–196. 10.1152/japplphysiol.00924.2016
    1. Egert S., Baxheinrich A., Lee-barkey Y. H., Tschoepe D., Wahrburg U., Stratmann B. (2014). Effects of an energy-restricted diet rich in plant-derived a -linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits. Br. J. Nutr. 112 1315–1322. 10.1017/S0007114514002001
    1. Ernst E. (1989). Effects of n-3 fatty acids on blood rheology. J. Intern. Med. 225 129–132. 10.1111/j.1365-2796.1989.tb01446.x
    1. Fahs C. A., Yan H., Ranadive S., Rossow L. M., Agiovlasitis S., Wilund K. R., et al. (2010). The effect of acute fish-oil supplementation on endothelial function and arterial stiffness following a high-fat meal. Appl. Physiol. Nutr. Metab. 35 294–302. 10.1139/H10-020
    1. Farzaneh-Far R., Harris W. S., Garg S., Na B., Whooley M. A. (2009). Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: the heart and soul study. Atherosclerosis 205 538–543. 10.1016/j.atherosclerosis.2008.12.013
    1. Gajos G., Zalewski J., Rostoff P., Nessler J., Piwowarska W., Undas A. (2011). Reduced thrombin formation and altered fibrin clot properties induced by polyunsaturated omega-3 fatty acids on top of dual antiplatelet therapy in patients undergoing percutaneous coronary intervention (OMEGA-PCI Clot). Arterioscler. Thromb. Vasc. Biol. 31 1696–1702. 10.1161/ATVBAHA.111.228593
    1. Gammone M. A., Riccioni G., Parrinello G., D’Orazio N., D’orazio N. (2018). Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients 11 1–16. 10.3390/nu11010046
    1. Gingras A.-A., White P. J., Chouinard P. Y., Julien P., Davis T. A., Dombrowski L., et al. (2007). Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 579 269–284. 10.1113/jphysiol.2006.121079
    1. Gleeson M., Bishop N. C., Stensel D. J., Lindley M. R., Mastana S. S., Nimmo M. A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11 607–615. 10.1038/nri3041
    1. Gortan G., Losurdo P., Mazzucco S., Panizon E., Jevnicar M., Macaluso L., et al. (2013). Treatment with n-3 polyunsaturated fatty acids reverses endothelial dysfunction and oxidative stress in experimental menopause. J. Nutr. Biochem. 24 371–379. 10.1016/j.jnutbio.2012.07.012
    1. Gravina L., Brown F. F., Alexander L., Dick J., Bell G., Witard O. C., et al. (2017). n-3 fatty acid supplementation during 4 weeks of training leads to improved anaerobic endurance capacity, but not maximal strength, speed, or power in soccer players. Int. J. Sport Nutr. Exerc. Metab. 27 305–313. 10.1123/ijsnem.201-0325
    1. Gray P., Gabriel B., Thies F., Gray S. R. (2012). Fish oil supplementation augments post-exercise immune function in young males. Brain. Behav. Immun. 26 1265–1272. 10.1016/j.bbi.2012.08.002
    1. Grygiel-Górniak B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications–a review. Nutr. J. 13:17. 10.1186/1475-2891-13-17
    1. Guglielmo C. G., Haunerland N. H., Hochachka P. W., Williams T. D. (2002). Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am. J. Physiol. Integr. Comp. Physiol. 282 R1405–R1413. 10.1152/ajpregu.00267.2001
    1. Hambrecht R., Adams V., Erbs S., Linke A., Kränkel N., Shu Y., et al. (2003). Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107 3152–3158. 10.1161/01.CIR.0000074229.93804.5C
    1. Harbaugh M. P., Manuck S. B., Jennings J. R., Conklin S. M., Yao J. K., Muldoon M. F. (2013). Long-chain, n-3 fatty acids and physical activity — Independent and interactive associations with cardiac autonomic control. Int. J. Cardiol. 167 2102–2107. 10.1016/j.ijcard.2012.05.110
    1. Hawley J. A., Hargreaves M., Joyner M. J., Zierath J. R. (2014). Integrative biology of exercise. Cell 159 738–749. 10.1016/j.cell.2014.10.029
    1. Hessvik N. P., Bakke S. S., Fredriksson K., Boekschoten M. V., Fjørkenstad A., Koster G., et al. (2010). Metabolic switching of human myotubes is improved by n-3 fatty acids. J. Lipid Res. 51 2090–2104. 10.1194/jlr.M003319
    1. Himburg H. A., Dowd S. E., Friedman M. H. (2007). Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ. Physiol. 293 H645–H653. 10.1152/ajpheart.01087.2006
    1. Holy E. W., Forestier M., Richter E. K., Akhmedov A., Leiber F., Camici G. G., et al. (2010). Dietary alpha-linolenic acid inhibits arterial thrombus formation, platelet activation, and tissue factor expression. Eur. Heart J. 31:974. 10.1161/ATVBAHA.111.226118
    1. Hopp D. C., Shurtleff D. (2018). Use of Omega-3 Supplements in the United States. Bethesda, MD: National Center for Complementary and Integrative Health.
    1. Hvas A. M., Neergaard-Petersen S. (2018). Influence of exercise on platelet function in patients with cardiovascular disease. Semin. Thromb. Hemost. 44 802–812. 10.1055/s-0038-1673618
    1. Ibrahim A., Mbodji K., Hassan A., Aziz M., Boukhettala N., Coëf M., et al. (2011). Anti-in fl ammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin. Nutr. 30 678–687. 10.1016/j.clnu.2011.05.002
    1. Itariu B. K., Zeyda M., Hochbrugger E. E., Neuhofer A., Prager G., Schindler K., et al. (2012). Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am. J. Clin. Nutr. 96 1137–1149. 10.3945/ajcn.112.037432
    1. Jeansen S., Witkamp R. F., Garthoff J. A., van Helvoort A., Calder P. C. (2018). Fish oil LC-PUFAs do not affect blood coagulation parameters and bleeding manifestations: analysis of 8 clinical studies with selected patient groups on omega-3-enriched medical nutrition. Clin. Nutr. 37 948–957. 10.1016/j.clnu.2017.03.027
    1. Jeromson S., Gallagher I. J., Galloway S. D. R. R., Hamilton D. L. (2015). Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 13 6977–7004. 10.3390/md13116977
    1. Jouris K. B., McDaniel J. L., Weiss E. P. (2011). The effect of Omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J. Sports Sci. Med. 10 432–438.
    1. Joyner M. J., Green D. J. (2009). Exercise protects the cardiovascular system: effects beyond traditional risk factors. J. Physiol. 587 5551–5558. 10.1113/jphysiol.2009.179432
    1. Kasikcioglu E., Oflaz H., Kasikcioglu H. A., Kayserilioglu A., Umman S., Meric M. (2005). Endothelial flow-mediated dilatation and exercise capacity in highly trained endurance athletes. Tohoku J. Exp. Med. 205 45–51. 10.1620/tjem.205.45
    1. Kawabata F., Neya M., Hamazaki K., Watanabe Y., Kobayashi S., Tsuji T. (2014). Supplementation with eicosapentaenoic acid-rich fish oil improves exercise economy and reduces perceived exertion during submaximal steady-state exercise in normal healthy untrained men. Biosci. Biotechnol. Biochem. 78 2081–2088. 10.1080/09168451.2014.946392
    1. Kawauchi K., Tani S., Nagao K., Hirayama A. (2014). Association of n-3 polyunsaturated fatty acids with soluble thrombomodulin as a marker of endothelial damage?: a cross-sectional pilot study. J. Cardiol. 64 312–317. 10.1016/j.jjcc.2014.02.004
    1. Khan F., Elherik K., Bolton-Smith C., Barr R., Hill A., Murrie I., et al. (2003). The effects of dietary fatty acid supplementation on endothelial function and vascular tone in healthy subjects. Cardiovasc. Res. 59 955–962. 10.1016/s0008-6363(03)00395-x
    1. Klonizakis M., Tew G., Michaels J., Saxton J. (2009). Exercise training improves cutaneous microvascular endothelial function in post-surgical varicose vein patients. Microvasc. Res. 78 67–70. 10.1016/j.mvr.2009.03.002
    1. Kondo K., Morino K., Nishio Y., Kondo M., Nakao K., Nakagawa F., et al. (2014). A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial. Metabolism 63 930–940. 10.1016/j.metabol.2014.04.005
    1. Kones R., Howell S., Rumana U. (2017). n-3 polyunsaturated fatty acids and cardiovascular disease: principles, practices, pitfalls, and promises - a contemporary review. Med. Princ. Pract. 26 497–508. 10.1159/000485837
    1. Kratz M., Kuzma J. N., Hagman D. K., van Yserloo B., Matthys C. C., Callahan H. S., et al. (2013). n3 PUFAs do not affect adipose tissue inflammation in overweight to moderately obese men and women. J. Nutr. 143 1340–1347. 10.3945/jn.113.174383
    1. Kubota Y., Higashiyama A., Imano H., Sugiyama D., Kawamura K., Kadota A., et al. (2015). Serum polyunsaturated fatty acid composition and serum high-sensitivity C-Reactive protein levels in healthy japanese residents: the KOBE study. J. Nutr. Health Aging 19 719–728. 10.1007/s12603-015-0497-9
    1. Kvernmo H. D., Stefanovska A., Kirkebøen K. A., Osterud B., Kvernebo K. (1998). Enhanced endothelium-dependent vasodilatation in human skin vasculature induced by physical conditioning. Eur. J. Appl. Physiol. Occup. Physiol. 79 30–36. 10.1007/s004210050469
    1. Lacroix S., Des Rosiers C., Gayda M., Nozza A., Thorin É., Tardif J.-C., et al. (2016). A single Mediterranean meal does not impair postprandial flow-mediated dilatation in healthy men with subclinical metabolic dysregulations. Appl. Physiol. Nutr. Metab. 41 888–894. 10.1139/apnm-2015-0490
    1. Lands B. (2016). Benefit–Risk assessment of fish oil in preventing cardiovascular disease. Drug Saf. 39 787–799. 10.1007/s40264-016-0438-5
    1. Laughlin M. H., Newcomer S. C., Bender S. B. (2008). Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J. Appl. Physiol. 104 588–600. 10.1152/japplphysiol.01096.2007
    1. Lauritzen L., Hansen H. S., Jørgensen M. H., Michaelsen K. F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40 1–94. 10.1016/s0163-7827(00)00017-5
    1. Lee K. W., Blann A. D., Lip G. Y. H. (2006). Effects of omega-3 polyunsaturated fatty acids on plasma indices of thrombogenesis and inflammation in patients post-myocardial infarction. Thromb. Res. 118 305–312. 10.1016/j.thromres.2005.07.018
    1. Lewis E., Radonic P., Wolever T., Wells G. (2015). 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J. Int. Soc. Sports Nutr. 12:28. 10.1186/s12970-015-0089-4
    1. Lewis J. S., Sandford F. M. (2009). Rotator cuff tendinopathy: is there a role for polyunsaturated fatty acids and antioxidants?. J. Hand Ther. 22 49–56. 10.1197/j.jht.2008.06.007
    1. Libby P. (2002). Inflammation in atherosclerosis. Nature 420 868–874. 10.1038/nature01323
    1. Liu H.-W., Chang S.-J. (2018). moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1α axis to attenuate muscle loss in diabetic db/db Mice. Front. Physiol. 9:636. 10.3389/fphys.2018.00636
    1. Liu Y., Chen F., Odle J., Lin X., Zhu H., Shi H., et al. (2013). Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge. J. Nutr. 143 1331–1339. 10.3945/jn.113.176255
    1. Lo D., Orta X., Caso K., Sa M. P., Orta X., Caso K., et al. (2004). Upregulation of endothelial nitric oxide synthase in rat aorta after ingestion of fish oil-rich diet. Am. J. Physiol. Heart Circ. Physiol. 287 567–572. 10.1152/ajpheart.01145.2003
    1. Lortet S., Verger P. (1995). Alteration of cardiovascular function in trained rats fed with fish oil. Int. J. Sports Med. 16 519–521. 10.1055/s-2007-973047
    1. Mackey A. L., Rasmussen L. K., Kadi F., Schjerling P., Helmark I. C., Ponsot E., et al. (2016). Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J. 30 2266–2281. 10.1096/fj.201500198R
    1. Maillet D., Weber J.-M. (2007). Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: evidence for natural doping. J. Exp. Biol. 210 413–420. 10.1242/jeb.02660
    1. McGlory C., Galloway S. D. R., Hamilton D. L., McClintock C., Breen L., Dick J. R., et al. (2014). Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation. Prostaglandins, Leukot. Essent. Fat. Acids 90 199–206. 10.1016/j.plefa.2014.03.001
    1. McKenzie D., Higgs D., Dosanjh B., Deacon G., Randall D. (1998). Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater. Fish Physiol. Biochem. 19 111–122.
    1. McMahon B., Godson C. (2004). Lipoxins: endogenous regulators of inflammation. Am. J. Physiol. Physiol. 286 F189–F201. 10.1152/ajprenal.00224.2003
    1. Merino J., Sala-Vila A., Kones R., Ferre R., Plana N., Girona J., et al. (2014). Increasing long-chain n-3PUFA consumption improves small peripheral artery function in patients at intermediate-high cardiovascular risk. J. Nutr. Biochem. 25 642–646. 10.1016/j.jnutbio.2014.02.004
    1. Mickleborough T. D., Sinex J. A., Platt D., Chapman R. F., Hirt M. (2015). The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a random. J. Int. Soc. Sports Nutr. 12:10. 10.1186/s12970-015-0073-z
    1. Miyoshi T., Noda Y., Ohno Y., Sugiyama H., Oe H., Nakamura K., et al. (2014). Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals – a randomized cross-over trial. Biomed. Pharmacother. 68 1071–1077. 10.1016/j.biopha.2014.10.008
    1. Molfino A., Amabile M. I., Monti M., Muscaritoli M. (2017). Omega-3 polyunsaturated fatty acids in critical illness: anti-inflammatory, proresolving, or both?. Oxid. Med. Cell. Longev. 2017:5987082. 10.1155/2017/5987082
    1. Morgan D. R., Dixon L. J., Hanratty C. G., El-sherbeeny N., Hamilton P. B., Mcgrath L. T., et al. (2006). Effects of dietary Omega-3 fatty acid supplementation on endothelium-dependent vasodilation in patients with chronic heart failure. Am. J. Cardiol. 97 547–551. 10.1016/j.amjcard.2005.08.075
    1. Mori T. A. (2014). Omega-3 fatty acids and cardiovascular disease: epidemiology and effects on cardiometabolic risk factors. Food Funct. 5 2004–2019. 10.1039/c4fo00393d
    1. Moyers B., Farzaneh-Far R., Harris W. S., Garg S., Na B., Whooley M. A. (2011). Relation of whole blood n-3 fatty acid levels to exercise parameters in patients with stable coronary artery disease (from the heart and soul study). Am. J. Cardiol. 107 1149–1154. 10.1016/j.amjcard.2010.11.040
    1. Muka T., Blekkenhorst L. C., Lewis J. R., Prince R. L., Erler N. S., Hofman A., et al. (2017). Dietary fat composition, total body fat and regional body fat distribution in two caucasian populations of middle-aged and older adult women. Clin. Nutr. 36 1411–1419. 10.1016/j.clnu.2016.09.018
    1. Nagahuedi S., Popesku J. T., Trudeau V. L., Weber J.-M. (2009). Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression. J. Exp. Biol. 212 1106–1114. 10.1242/jeb.027888
    1. Nakamoto K., Nishinaka T., Ambo A., Mankura M., Kasuya F., Tokuyama S. (2011). Possible involvement of β-endorphin in docosahexaenoic acid-induced antinociception. Eur. J. Pharmacol. 666 100–104. 10.1016/j.ejphar.2011.05.047
    1. Nestares T., López-Jurado M., Urbano G., Seiquer I., Ramírez-Tortosa M. C., Ros E., et al. (2003). Effects of lifestyle modification and lipid intake variations on patients with peripheral vascular disease. Int. J. Vitam. Nutr. Res. 73 389–398. 10.1024/0300-9831.73.5.389
    1. Nodari S., Triggiani M., Campia U., Manerba A., Milesi G., Cesana B. M., et al. (2011). Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 57 870–879. 10.1016/j.jacc.2010.11.017
    1. Nordøy A., Bønaa K. H., Sandset P. M., Hansen J. B., Nilsen H. (2000). Effect of omega-3 fatty acids and simvastatin on hemostatic risk factors and postprandial hyperlipemia in patients with combined hyperlipemia. Arterioscler. Thromb. Vasc. Biol. 20 259–265. 10.1161/01.ATV.20.1.259
    1. Northoff H., Berg A. (1991). Immunologic mediators as parameters of the reaction to strenuous exercise. Int. J. Sports Med. 12 S9–S15. 10.1055/s-2007-1024743
    1. Oosthuizen W., Vorster H. H., Jerling J. C., Barnard H. C., Smuts C. M., Silvis N., et al. (1994). Both fish oil and olive oil lowered plasma fibrinogen in women with high baseline fibrinogen levels. Thromb. Haemost. 72 557–562. 10.1055/s-0038-1648914
    1. Padilla J., Simmons G. H., Bender S. B., Arce-Esquivel A. A., Whyte J. J., Laughlin M. H. (2011). Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology 26 132–145. 10.1152/physiol.00052.2010
    1. Pe P., Jime Y., Marı C., Go P., Caballero J., Pe F., et al. (2008). Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with α-linolenic acid on postprandial endothelial function in healthy men. Br. J. Nutr. 100 159–165. 10.1017/S0007114508888708
    1. Pedersen B. K. (2000). Effects of exercise on lymphocytes and cytokines. Br. J. Sports Med. 34 246–251. 10.1136/bjsm.34.4.246
    1. Peres A., Dorneles G. P., Boeira M. C. R., Schipper L. L., Beretta Â., Vilela T., et al. (2018). Acute fish oil supplementation modulates the inflammatory response after strenuous exercise in obese men: a cross-over study. Prostaglandins Leukot. Essent. Fatty Acids 137 5–11. 10.1016/j.plefa.2018.07.017
    1. Phang M., Scorgie F. E., Seldon M., Garg M. L., Lincz L. F. (2014). Reduction of prothrombin and Factor V levels following supplementation with omega-3 fatty acids is sex dependent: a randomised controlled study. J. Nutr. Biochem. 25 997–1002. 10.1016/j.jnutbio.2014.05.001
    1. Philipsen M. H., Sämfors S., Malmberg P., Ewing A. G. (2018). Relative quantification of deuterated omega-3 and -6 fatty acids and their lipid turnover in PC12 cell membranes using TOF-SIMS. J. Lipid Res. 59 2098–2107. 10.1194/jlr.M087734
    1. Philp L. K., Heilbronn L. K., Janovska A., Wittert G. A. (2015). Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice. PLoS One 10:e0117494. 10.1371/journal.pone.0117494
    1. Philpott J. D., Witard O. C., Galloway S. D. R. (2019). Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res. Sport. Med. 27 219–237. 10.1080/15438627.2018.1550401
    1. Phitak T., Boonmaleerat K., Pothacharoen P., Pruksakorn D., Kongtawelert P. (2018). Leptin alone and in combination with interleukin-1-beta induced cartilage degradation potentially inhibited by EPA and DHA. Connect. Tissue Res. 59 316–331. 10.1080/03008207.2017.1385605
    1. Piepoli M. F., Hoes A. W., Agewall S., Albus C., Brotons C., Catapano A. L., et al. (2016). 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 37 2315–2381. 10.1093/eurheartj/ehw106
    1. Poreba M., Mostowik M., Siniarski A., Golebiowska-Wiatrak R., Malinowski K. P., Haberka M., et al. (2017). Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc. Diabetol. 16 1–11. 10.1186/s12933-017-0523-9
    1. Reinders I., Virtanen J. K., Brouwer I. A., Tuomainen T.-P. P. (2012). Association of serum n-3 polyunsaturated fatty acids with C-reactive protein in men. Eur. J. Clin. Nutr. 66 736–741. 10.1038/ejcn.2011.195
    1. Rizzaa S., Tesauro M., Cardillo C., Galli A., Iantorno M., Gigli F., et al. (2009). Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis 206 569–574. 10.1016/j.atherosclerosis.2009.03.006
    1. Rodacki C. L., Rodacki A. L., Pereira G., Naliwaiko K., Coelho I., Pequito D., et al. (2012). Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 95 428–436. 10.3945/ajcn.111.021915
    1. Romain A. J., Brun J. F., Varlet-Marie E., Raynaud de Mauverger E. (2011). Effects of exercise training on blood rheology: A meta-analysis. Clin. Hemorheol. Microcirc. 49 199–205. 10.3233/CH-2011-1469
    1. Routledge F. S., Campbell T. S., McFetridge-Durdle J. A., Bacon S. L. (2010). Improvements in heart rate variability with exercise therapy. Can. J. Cardiol. 26 303–312. 10.1016/s0828-282x(10)70395-0
    1. Ruf T., Valencak T., Tataruch F., Arnold W. (2006). Running speed in mammals increases with muscle n-6 polyunsaturated fatty acid content. PLoS One 1:e65. 10.1371/journal.pone.0000065
    1. Samuelsson B. (2012). Role of basic science in the development of new medicines: examples from the eicosanoid field. J. Biol. Chem. 287 10070–10080. 10.1074/jbc.X112.351437
    1. Samuelsson B., Dahlen S., Lindgren J. A. N. A., Rouzer C. A., Serhan C. N. (1987). Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237 1171–1176. 10.1126/science.2820055
    1. Sanders T. A., Hall W. L., Maniou Z., Lewis F., Seed P. T., Chowienczyk P. J. (2011). Effect of low doses of long-chain n-3 PUFAs on endothelial function and arterial stiffness: a randomized controlled trial. Am. J. Clin. Nutr. 94 973–980. 10.3945/ajcn.111.018036
    1. Sandford F. M., Sanders T. A., Wilson H., Lewis J. S. (2018). A randomised controlled trial of long-chain omega-3 polyunsaturated fatty acids in the management of rotator cuff related shoulder pain. BMJ Open Sport Exerc. Med. 4:e000414. 10.1136/bmjsem-2018-000414
    1. Schubert R., Kitz R., Beermann C., Rose M. A., Lieb A., Sommerer P. C., et al. (2009). Effect of n-3 polyunsaturated fatty acids in asthma after low-dose allergen challenge. Int. Arch. Allergy Immunol. 148 321–329. 10.1159/000170386
    1. Sen C. K. (1995). Oxidants and antioxidants in exercise. J. Appl. Physiol. 79 675–686. 10.1152/jappl.1995.79.3.675
    1. Serhan C. N. (1994). Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212 1–25. 10.1016/0005-2760(94)90185-6
    1. Serhan C. N., Dalli J., Karamnov S., Choi A., Park C.-K., Xu Z.-Z., et al. (2012). Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26 1755–1765. 10.1096/fj.11-201442
    1. Shah A. P., Ichiuji A. M., Han J. K., Traina M., El-Bialy A., Meymandi S. K., et al. (2007). Cardiovascular and endothelial effects of fish oil supplementation in healthy volunteers. J. Cardiovasc. Pharmacol. Ther. 12 213–219. 10.1177/1074248407304749
    1. Shahar E., Folsom A. R., Wu K. K., Dennis B. H., Shimakawa T., Conlan M. G., et al. (1993). Associations of fish intake and dietary n-3 polyunsaturated fatty acids with a hypocoagulable profile. the atherosclerosis risk in communities (ARIC) study. Arterioscler. Thromb. A J. Vasc. Biol. 13 1205–1212. 10.1161/01.ATV.13.8.1205
    1. Shaw D. M., Merien F., Braakhuis A., Dulson D. (2018). T-cells and their cytokine production: the anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 104 136–142. 10.1016/j.cyto.2017.10.001
    1. Singhal A., Lanigan J., Storry C., Low S., Birbara T., Lucas A., et al. (2013). Docosahexaenoic acid supplementation, vascular function and risk factors for cardiovascular disease: a randomized controlled trial in young adults. J. Am. Heart Assoc. 2:e000283. 10.1161/JAHA.113.000283
    1. Sioen I., van Lieshout L., Eilander A., Fleith M., Lohner S., Szommer A., et al. (2017). Systematic review on N-3 and N-6 polyunsaturated fatty acid intake in european countries in light of the current recommendations - focus on specific population groups. Ann. Nutr. Metab. 70 39–50. 10.1159/000456723
    1. Skulas-Ray A. C., Kris-Etherton P. M., Harris W. S., Vanden Heuvel J. P., Wagner P. R., West S. G. (2011). Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am. J. Clin. Nutr. 93 243–252. 10.3945/ajcn.110.003871
    1. Smith G. I., Atherton P., Reeds D. N., Mohammed B. S., Rankin D., Rennie M. J., et al. (2011a). Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am. J. Clin. Nutr. 93 402–412. 10.3945/ajcn.110.005611
    1. Smith G. I., Atherton P., Reeds D. N., Mohammed B. S., Rankin D., Rennie M. J., et al. (2011b). Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia–hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 121 267–278. 10.1042/CS20100597
    1. Smith S. C., Benjamin E. J., Bonow R. O., Braun L. T., Creager M. A., Franklin B. A., et al. (2011c). AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update. Circulation 124 2458–2473. 10.1161/CIR.0b013e318235eb4d
    1. Smith G. I., Julliand S., Reeds D. N., Sinacore D. R., Klein S., Mittendorfer B. (2015). Fish oil–derived n-3 PUFA therapy increases muscle mass and function in healthy older adults1. Am. J. Clin. Nutr. 102 115–122. 10.3945/ajcn.114.105833
    1. Stupin A., Rasic L., Matic A., Stupin M., Kralik Z., Kralik G., et al. (2018). Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl. Physiol. Nutr. Metab. 43 988–995. 10.1139/apnm-2017-0735
    1. Stupin M., Stupin A., Rasic L., Cosic A., Kolar L., Seric V., et al. (2018). Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes. Eur. J. Appl. Physiol. 118 461–474. 10.1007/s00421-017-3790-y
    1. Sun Q., Wu Y., Zhao F., Wang J. (2017). Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway. Oxid. Med. Cell. Longev. 2017 1–12. 10.1155/2017/9634803
    1. Tachtsis B., Camera D., Lacham-Kaplan O. (2018). Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients 10:309. 10.3390/nu10030309
    1. Tecklenburg-Lund S., Mickleborough T. D., Turner L. A., Fly A. D., Stager J. M., Montgomery G. S. (2010). Randomized controlled trial of fish oil and montelukast and their combination on airway inflammation and hyperpnea-induced bronchoconstriction. PLoS One 5:e13487. 10.1371/journal.pone.0013487
    1. Tew G. A., Klonizakis M., Saxton J. M. (2010). Effects of ageing and fitness on skin-microvessel vasodilator function in humans. Eur. J. Appl. Physiol. 109 173–181. 10.1007/s00421-009-1342-9
    1. Thies F., Miles E. A., Nebe-von-Caron G., Powell J. R., Hurst T. L., Newsholme E. A., et al. (2001a). Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 36 1183–1193. 10.1007/s11745-001-0831-4
    1. Thies F., Nebe-von-Caron G., Powell J. R., Yaqoob P., Newsholme E. A., Calder P. C. (2001b). Dietary supplementation with gamma-linolenic acid or fish oil decreases T lymphocyte proliferation in healthy older humans. J. Nutr. 131 1918–1927. 10.1093/jn/131.7.1918
    1. Thomas T. R., Liu Y., Linden M. A., Rector R. S. (2007). Interaction of exercise training and n -3 fatty acid supplementation on postprandial lipemia. Appl. Physiol. Nutr. Metab. 32 473–480. 10.1139/H07-021
    1. Torres-Castillo N., Silva-Gómez J. A., Campos-Perez W., Barron-Cabrera E., Hernandez-Cañaveral I., Garcia-Cazarin M., et al. (2018). High dietary ω-6:ω-3 PUFA ratio is positively associated with excessive adiposity and waist circumference. Obes. Facts 11 344–353. 10.1159/000492116
    1. Tousoulis D., Plastiras A., Siasos G., Oikonomou E., Verveniotis A., Kokkou E., et al. (2014). Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiin fl ammatory effect in adults with metabolic syndrome. Atherosclerosis 232 10–16. 10.1016/j.atherosclerosis.2013.10.014
    1. Vanschoonbeek K., Feijge M. A. H., Paquay M., Rosing J., Saris W., Kluft C., et al. (2004). Variable hypocoagulant effect of fish oil intake in humans. Arterioscler. Thromb. Vasc. Biol. 24 1734–1740. 10.1161/01.atv.0000137119.28893.0b
    1. Varming K., Schmidt E. B., Svaneborg N., Møller J. M., Lervang H. H., Grunnet N., et al. (1995). The effect of n-3 fatty acids on neutrophil chemiluminescence. Scand. J. Clin. Lab. Invest. 55 47–52. 10.3109/00365519509075377
    1. Vella L., Caldow M. K., Larsen A. E., Tassoni D., Della Gatta P. A., Gran P., et al. (2012). Resistance exercise increases NF-κB activity in human skeletal muscle. Am. J. Physiol. Integr. Comp. Physiol. 302 R667–R673. 10.1152/ajpregu.00336.2011
    1. Véricel E., Colas R., Calzada C., Lê Q. H., Feugier N., Cugnet C., et al. (2015). Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients. Thromb. Haemost. 114 289–296. 10.1160/th14-12-1003
    1. Wada M., DeLong C. J., Hong Y. H., Rieke C. J., Song I., Sidhu R. S., et al. (2007). Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J. Biol. Chem. 282 22254–22266. 10.1074/jbc.M703169200
    1. Wallace J. L., Fiorucci S. (2003). A magic bullet for mucosal protection…and aspirin is the trigger! Trends Pharmacol. Sci. 24 323–326. 10.1016/S0165-6147(03)00166-4
    1. Walser B., Giordano R. M., Stebbins C. L. (2006). Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur. J. Appl. Physiol. 97 347–354. 10.1007/s00421-006-0190-0
    1. Wang C., Liu W., Yao L., Zhang X., Zhang X., Ye C., et al. (2017). Hydroxyeicosapentaenoic acids and epoxyeicosatetraenoic acids attenuate early occurrence of nonalcoholic fatty liver disease. Br. J. Pharmacol. 174 2358–2372. 10.1111/bph.13844
    1. Wang J.-S. (2005). Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature. Eur. J. Appl. Physiol. 93 429–434. 10.1007/s00421-004-1176-4
    1. Wang Q., Liang X., Wang L., Lu X., Huang J., Cao J., et al. (2012). Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis 221 536–543. 10.1016/j.atherosclerosis.2012.01.006
    1. Wang T.-M., Chen C.-J., Lee T.-S., Chao H.-Y., Wu W.-H., Hsieh S.-C., et al. (2011). Docosahexaenoic acid attenuates VCAM-1 expression and NF-κB activation in TNF-α-treated human aortic endothelial cells. J. Nutr. Biochem. 22 187–194. 10.1016/j.jnutbio.2010.01.007
    1. Warburton D. E. R., Bredin S. S. D. (2017). Health benefits of physical activity: a systematic review of current systematic reviews. Curr. Opin. Cardiol. 32 541–556. 10.1097/HCO.0000000000000437
    1. Weiner H. L., Selkoe D. J. (2002). Inflammation and therapeutic vaccination in CNS diseases. Nature 420 879–884. 10.1038/nature01325
    1. Whitehouse A. S., Smith H. J., Drake J. L., Tisdale M. J. (2001). Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 61 3604–3609.
    1. Xiao Y. F., Kang J. X., Morgan J. P., Leaf A. (1995). Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A. 92 11000–11004. 10.1073/pnas.92.24.11000
    1. Xin W., Wei W., Li X. (2012). Effect of fish oil supplementation on fasting vascular endothelial function in humans: a meta-analysis of randomized controlled trials. PLoS One 7:e46028. 10.1371/journal.pone.0046028
    1. Yagi S., Aihara K., Fukuda D., Takashima A., Hara T., Hotchi J. (2015). Effects of docosahexaenoic acid on the endothelial function in patients with coronary artery disease. J. Atheroscler. Thromb. 22 447–454. 10.5551/jat.26914
    1. Yoshino J., Smith G. I., Kelly S. C., Julliand S., Reeds D. N., Mittendorfer B. (2016). Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol. Rep. 4:e12785. 10.14814/phy2.12785
    1. You J.-S., Park M.-N., Song W., Lee Y.-S. (2010). Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Appl. Physiol. Nutr. Metab. 35 310–318. 10.1139/H10-022
    1. Zaloga G. P., Marik P. (2001). Lipid modulation and systemic inflammation. Crit. Care Clin. 17 201–217. 10.1016/s0749-0704(05)70160-3
    1. Zhang W., Fu F., Tie R., Liang X., Tian F., Xing W., et al. (2013). Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms. VASA J. Vasc. Dis. 42 421–428. 10.1024/0301-1526/a000311

Source: PubMed

3
Iratkozz fel