Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation

B Ensoli, L Buonaguro, G Barillari, V Fiorelli, R Gendelman, R A Morgan, P Wingfield, R C Gallo, B Ensoli, L Buonaguro, G Barillari, V Fiorelli, R Gendelman, R A Morgan, P Wingfield, R C Gallo

Abstract

During acute human immunodeficiency virus type 1 (HIV-1) infection or after transfection of the tat gene, Tat protein is released into the cell culture supernatant. In this extracellular form, Tat stimulates both HIV-1 gene expression and the growth of cells derived from Kaposi's sarcoma (KS) lesions of HIV-1-infected individuals (AIDS-KS cells). Tat protein and its biological activities appear in the cell supernatants at the peak of Tat expression, when the rate of cell death is low (infection) or cell death is undetectable (transfection) and increased levels of cytoplasmic Tat are present. Tat-containing supernatants stimulate maximal AIDS-KS cell growth but only low to moderate levels of HIV-1 gene expression. This is due to the different concentrations of exogenous Tat required for the two effects. The cell growth-promoting effects of Tat peak at between 0.1 and 1 ng of purified recombinant protein per ml in the cell growth medium and do not increase with concentration. In contrast, both the detection of nuclear-localized Tat taken up by cells and the induction of HIV-1 gene expression or replication require higher Tat concentrations (> or = 100 ng/ml), and all increase linearly with increasing amounts of the exogenous protein. These data suggest that Tat can be released by a mechanism(s) other than cell death and that the cell growth-promoting activity and the virus-transactivating effect of extracellular Tat are mediated by different pathways.

References

    1. New Biol. 1990 Nov;2(11):1034-43
    1. EMBO J. 1991 Jul;10(7):1733-9
    1. J Virol. 1991 Aug;65(8):4547-9
    1. J Am Acad Dermatol. 1981 Oct;5(4):468-71
    1. Mol Cell Biol. 1982 Sep;2(9):1044-51
    1. Science. 1983 May 20;220(4599):868-71
    1. Science. 1984 May 4;224(4648):497-500
    1. Science. 1984 May 4;224(4648):500-3
    1. Science. 1984 Aug 24;225(4664):840-2
    1. Cell. 1985 Jul;41(3):813-23
    1. Science. 1985 Jul 5;229(4708):69-73
    1. Cell. 1986 Mar 28;44(6):941-7
    1. Nature. 1986 Mar 27-Apr 2;320(6060):367-71
    1. J Immunol. 1986 Jul 1;137(1):245-54
    1. Science. 1986 Nov 21;234(4779):988-92
    1. Am J Med. 1987 Mar;82(3):389-96
    1. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5389-93
    1. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6364-8
    1. Nature. 1988 Oct 13;335(6191):606-11
    1. Science. 1988 Oct 21;242(4877):426-30
    1. Science. 1988 Oct 21;242(4877):430-3
    1. J Virol. 1989 Jan;63(1):1-8
    1. New Biol. 1991 Jul;3(7):678-86
    1. Science. 1992 Mar 13;255(5050):1430-2
    1. Science. 1992 Mar 13;255(5050):1432-4
    1. J Virol. 1992 Dec;66(12):7159-67
    1. Science. 1989 Jan 13;243(4888):223-6
    1. J Virol. 1989 Mar;63(3):1181-7
    1. Proc Natl Acad Sci U S A. 1989 Feb;86(3):821-4
    1. Endocrinology. 1989 Mar;124(3):1539-47
    1. Crit Rev Immunol. 1989;9(1):1-20
    1. Int Arch Allergy Appl Immunol. 1989;88(3):297-303
    1. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7397-401
    1. EMBO J. 1989 Oct;8(10):3019-27
    1. Science. 1989 Dec 22;246(4937):1606-8
    1. J Immunol. 1990 Jan 1;144(1):147-52
    1. EMBO J. 1990 May;9(5):1503-10
    1. Nature. 1990 May 3;345(6270):84-6
    1. J Invest Dermatol. 1990 Aug;95(2):233-7
    1. J Cell Biol. 1990 Sep;111(3):1275-81
    1. J Immunol. 1990 Oct 1;145(7):2110-4
    1. Genes Dev. 1990 Aug;4(8):1365-73
    1. New Biol. 1990 May;2(5):479-86
    1. Cancer Metastasis Rev. 1990 Nov;9(3):227-38
    1. AIDS Res Hum Retroviruses. 1990 Nov;6(11):1257-63
    1. Hematol Oncol Clin North Am. 1991 Apr;5(2):281-95
    1. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4045-9
    1. Cell. 1988 Dec 23;55(6):1189-93

Source: PubMed

3
Iratkozz fel