Peak systolic velocity of superior thyroid artery for the differential diagnosis of thyrotoxicosis

Xiaolong Zhao, Lili Chen, Ling Li, Yao Wang, Yong Wang, Linuo Zhou, Fangfang Zeng, Yiming Li, Renming Hu, Hong Liu, Xiaolong Zhao, Lili Chen, Ling Li, Yao Wang, Yong Wang, Linuo Zhou, Fangfang Zeng, Yiming Li, Renming Hu, Hong Liu

Abstract

Aim: The differentiation of destruction-induced thyrotoxicosis and Graves' disease (GD) is of great importance for selection of proper therapy. Radioactive iodine uptake (RAIU) is the gold standard for differentiating these two conditions but its application has remained somewhat limited. Thyroid color Doppler flow sonography (CDFS) is a potential alternative of RAIU but more supporting evidence is warranted. In the present study, a standard operative procedure was developed to measure the mean peak systolic velocity of superior thyroid artery (STA-PSV) and evaluate its role in the differential diagnosis of thyrotoxicosis.

Methods: A total of 135 patients with untreated thyrotoxicosis were enrolled into one retrospective study (GD, n = 103; thyroiditis, n = 32) and another prospective study recruited 169 patients (GD, n = 118; thyroiditis, n = 51). Thirty normal controls were also enrolled. Thyroid function, anti-TSH-receptor antibody (TRAb), RAIU, CFDS of thyroid and STA-PSV were performed for each patient. Receiver operator curve (ROC) was used to evaluate the diagnostic value of STA-PSV in a retrospective study so as to seek the optimal cutoff point. Then the cutoff point value was used to validate its diagnostic value in a prospective study and in another thyrotoxicosis population.

Results: STA-PSV of GD was significantly higher than that of thyroiditis in both retrospective and prospective studies. The area under the ROC curve of mean STA-PSV was 0.8799 and 0.9447 in the retrospective and prospective studies respectively. If a mean STA-PSV cutoff point of 50.5 cm/s was set from the retrospective analysis for the prospective study, the sensitivity and specificity in distinguishing GD from thyroiditis were 81.04% and 96.08% respectively. Mean STA-PSV and TRAb had similar area under ROC. The coefficients of variation in STA-PSV measurement were lower than 10% for the euthyroid, thyroiditis and GD groups.

Conclusions: STA-PSV is a feasible supplement alternative of RAIU for differentiating the causes of thyrotoxicosis.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Correlations of mean STA-PSV with…
Figure 1. Correlations of mean STA-PSV with 3 h and 24 h RAIU.
Figure 2. Distribution of mean STA-PSV of…
Figure 2. Distribution of mean STA-PSV of normal subjects and patients with thyroiditis and GD.
Figure 3. Capacity for the differentiation of…
Figure 3. Capacity for the differentiation of thyrotoxicosis: TRAb, FT3/FT4, and mean STA-PSV.

References

    1. Bahn Chair RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, et al. (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21: 593–646.
    1. Erdogan MF, Anil C, Cesur M, Baskal N, Erdogan G (2007) Color flow Doppler sonography for the etiologic diagnosis of hyperthyroidism. Thyroid 17: 223–228.
    1. Hari Kumar KV, Pasupuleti V, Jayaraman M, Abhyuday V, Rayudu BR, et al. (2009) Role of thyroid Doppler in differential diagnosis of thyrotoxicosis. Endocr Pract 15: 6–9.
    1. Ota H, Amino N, Morita S, Kobayashi K, Kubota S, et al. (2007) Quantitative measurement of thyroid blood flow for differentiation of painless thyroiditis from Graves’ disease. Clin Endocrinol (Oxf) 67: 41–45.
    1. Varghese SS, Frankel SH (2003) Numerical modeling of pulsatile turbulent flow in stenotic vessels. J Biomech Eng 125: 445–460.
    1. Narouze S (2009) Beware of the “serpentine” inferior thyroid artery while performing stellate ganglion block. Anesth Analg 109: 289–290.
    1. Toni R, Della Casa C, Castorina S, Malaguti A, Mosca S, et al. (2004) A meta-analysis of superior thyroid artery variations in different human groups and their clinical implications. Ann Anat 186: 255–262.
    1. Jun L, Heming Z, Yu W, Ping G, Jie Y, et al. (2001) Study on the normal value of people’s rate of iodine uptake after universal iodine salt. China J Ctrl Endern Dis 16: 79–80.
    1. Carle A, Pedersen IB, Knudsen N, Perrild H, Ovesen L, et al. (2011) Epidemiology of subtypes of hyperthyroidism in Denmark - a population-based study. Eur J Endocrinol 164: 801–809.
    1. Amino N, Yabu Y, Miki T, Morimoto S, Kumahara Y, et al. (1981) Serum ratio of triiodothyronine to thyroxine, and thyroxine-binding globulin and calcitonin concentrations in Graves’ disease and destruction-induced thyrotoxicosis. J Clin Endocrinol Metab 53: 113–116.
    1. Yoshimura Noh J, Momotani N, Fukada S, Ito K, Miyauchi A, et al. (2005) Ratio of serum free triiodothyronine to free thyroxine in Graves’ hyperthyroidism and thyrotoxicosis caused by painless thyroiditis. Endocr J 52: 537–542.
    1. Yanagisawa T, Sato K, Kato Y, Shimizu S, Takano K (2005) Rapid differential diagnosis of Graves’ disease and painless thyroiditis using total T3/T4 ratio, TSH, and total alkaline phosphatase activity. Endocr J 52: 29–36.
    1. Rootwelt K (1988) Evaluation of a radioreceptor assay for TSH receptor autoantibodies. Scand J Clin Lab Invest 48: 157–164.
    1. Giovanella L, Ceriani L, Ghelfo A (2008) Second-generation thyrotropin receptor antibodies assay and quantitative thyroid scintigraphy in autoimmune hyperthyroidism. Horm Metab Res 40: 484–486.
    1. Tozzoli R, Bagnasco M, Giavarina D, Bizzaro N (2012) TSH receptor autoantibody immunoassay in patients with Graves’ disease: Improvement of diagnostic accuracy over different generations of methods. Systematic review and meta-analysis. Autoimmun Rev [epub ahead of print].
    1. Bogazzi F, Vitti P (2008) Could improved ultrasound and power Doppler replace thyroidal radioiodine uptake to assess thyroid disease? Nat Clin Pract Endocrinol Metab 4: 70–71.
    1. Shaalan WE, Wahlgren CM, Desai T, Piano G, Skelly C, et al. (2008) Reappraisal of velocity criteria for carotid bulb/internal carotid artery stenosis utilizing high-resolution B-mode ultrasound validated with computed tomography angiography. J Vasc Surg 48: 104–112.

Source: PubMed

3
Iratkozz fel