Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein

K W Wucherpfennig, J L Strominger, K W Wucherpfennig, J L Strominger

Abstract

Structural similarity between viral T cell epitopes and self-peptides could lead to the induction of an autoaggressive T cell response. Based on the structural requirements for both MHC class II binding and TCR recognition of an immunodominant myelin basic protein (MBP) peptide, criteria for a data base search were developed in which the degeneracy of amino acid side chains required for MHC class II binding and the conservation of those required for T cell activation were considered. A panel of 129 peptides that matched the molecular mimicry motif was tested on seven MBP-specific T cell clones from multiple sclerosis patients. Seven viral and one bacterial peptide efficiently activated three of these clones. Only one peptide could have been identified as a molecular mimic by sequence alignment. The observation that a single T cell receptor can recognize quite distinct but structurally related peptides from multiple pathogens has important implications for understanding the pathogenesis of autoimmunity.

References

    1. Allegretta M, Nicklas J.A, Sriram S, Albertini R.J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990;247:718–721.
    1. Baig S, Olsson O, Olsson T, Love A, Jeansson S, Link H. Cells producing antibody to measles and herpes simplex virus in cerebrospinal fluid and blood of patients with multiple sclerosis and controls. clin. Exp. Immunol. 1989;78:390–395.
    1. Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman C.G, Steinman L. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superahtigen. Nature. 1993;365:642–644.
    1. Brown L.R, Nygard N.R, Graham M.B, Bono C, Braciale V.L, Gorka J, Schwartz B.D, Braciale T.J. Recognition of the influenza hemagglutinin by class II MHC-restricted T lymphocytes and antibodies. I. Site definition and implications for antigen presentation and T lymphocyte recognition. J. Immunol. 1991;147:2677–2684.
    1. Brown J.H, Jardetzky T.S, Gorge J.C, Stern L.J, Urban R.G, Strominger J.L, Wiley D.C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33–39.
    1. Burns J, Rosenzweig A, Zweiman B, Lisak R.P. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell. Immunol. 1983;81:435–440.
    1. Burrows S.R, Khanna R, Burrows J.M, Moss D.J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) clones cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 1994;179:1155–1161.
    1. Busch R, Hill C.M, Hayball J.D, Lamb J.R, Rothbard J.B. Effect of a natural polymorphism at residue 86 of the HLA-DR β chain on peptide binding. J. Immunol. 1991;147:1292–1298.
    1. Chambers T.M, Yamnikova S, Kawaoka Y, Lvov D.K, Webster R.G. Antigenic and molecular characterization of subtype H13 hemagglutinin of influenza virus. Virology. 1989;172:180–188.
    1. Cole B.C, Griffiths M.M. Triggering and exacerbation of autoimmune arthritis by the mycoplasma arthritidis superantigen MAM. Arthritis Rheum. 1993;36:994–1002.
    1. Conrad B, Weidmann E, Trucco G, Rudert W.A, Behboo R, Ricordi C, Rodriquez-Rilo H, Finegold D, Trucco M. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature. 1994;371:351–355.
    1. Datta A.K, Feighny R.J, Pagano J.S. Induction of Epstein-Barr virus-associated DNA polymerase by 12-O-tetradecanoylphorbol-13-acetate. J. Biol. Chem. 1980;255:5120–5125.
    1. Epstein M.A, Achong B.G. Pathogenesis of infectious mononucleosis. Lancet. 1977;ii:1270–1272.
    1. Friedman S.M, Crow M.K, Tumang J.R, Tumang M, Xu Y, Hodtsev A.S, Cole B.C, Posnett D.N. Characterization of human T cells reactive with the mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against Vβ17, the T cell receptor gene product expressed by a large fraction of MAMreactive human T cells. J. Exp. Med. 1991;174:891–900.
    1. Fujinami R.S, Oldstone M.B.A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: a mechanism for autoimmunity. Science. 1985;230:1043–1045.
    1. Hickey W.F, Hsu B.L, Kimura H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 1991;28:254–260.
    1. Johnson R.T, Griffin D.E, Hirsch J.S, Wolinsky J.S, Rodenbeck S, Lindo De Soriano I, Vaisberg A. Measles encephalomyelitis: clinical and immunological studies. N Engl. J. Med. 1984;310:137–141.
    1. Kappler J.W, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987;49:273–280.
    1. Kaufman D.L, Clare-Salzler M, Tian J, Forsthuber T, Ting G.S.P, Robinson P, Atkinson M.A, Sercarz E.E, Tobin A.J, Lehmann P.V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993;366:69–72.
    1. Kisielow P, Teh H.S, Blüthmann H, von Boehmer H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature. 1988;335:730–733.
    1. Kurtzke J.F. Epidemiology of multiple sclerosis. In: Vinken P.J, Bruyn G.W, Klawans H.L, Koetsier J.C, editors. Elsevier Science Publishing; New York: 1985. pp. 259–287. (Handbook of Clinical Neurology).
    1. Kurtzke J.F, Hyllestad K. Multiple sclerosis in the Faroe Islands: clinical and epidemiological features. Ann. Neurol. 1979;5:6–21.
    1. Lehmann P.V, Forsthuber T, Miller A, Sercarz E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992;358:155–157.
    1. Madden D.R, Garboczi D.N, Wiley D.C. The antigenic identity of peptide-MHC complexes: a comparison of the conformation of five viral peptides presented by HLA-A2. Cell. 1993;75:693–708.
    1. Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long E.O, McFarlin D.E, McFarland H.F. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J. Immunol. 1990;145:540–548.
    1. Oldstone M.B.A. Molecular mimicry and autoimmune disease. Cell. 1990;50:819–820.
    1. Olerup O, Hillert J, Fredrickson S, Olsson T, Kam-Hansen S, Moeller E, Carlsson B, Wallin J. Vol. 86. 1989. Primary chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities; pp. 7113–7117. (Proc. Natl. Acad. Sci. USA).
    1. Ota K, Matsui M, Milford E.L, Mackin G.A, Weiner H.L, Hafler D.A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990;346:183–187.
    1. Pette M, Fujita K, Wilkinson D, Altmann D.M, trowsdale J, Giegerich G, Hinkkanen A, Epplen J.T, Kappos L, Wekerle H. Vol. 87. 1990. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors; pp. 7968–7972. (Proc. Natl. Acad. Sci. USA).
    1. Ray C.G, Palmer J.P, Crossley J.R, Williams R.H. Coxsackie B virus antibody responses in juvenile-onset diabetes mellitus. Clin. Endocrinol. 1980;12:375–378.
    1. Reay P.A, Kantor R.M, Davis M.M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103) J. Immunol. 1994;150:3946–3957.
    1. Rose N.R, Wolfgram L.J, Herskowitz A, Beisel K.W. Postinfectious autoimmunity: two distinct phases of coxsackie B3induced myocarditis. Ann. NY Acad. Sci. 1986;475:146–156.
    1. Schluesener H.J, Wekerle H. Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: in vitro selection from unprimed T lymphocyte populations. J. Immunol. 1985;135:3128–3133.
    1. Schwarz E, Freese U.K, Gissman L, Mayer W, Roggenbuck B, Stremlau A, zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114.
    1. Sebzda E, Wallace V.A, Mayer J, Yeung R.S.M, Mak T.W, Ohashi P.S. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science. 1994;263:1615–1618.
    1. Spielman R.S, Nathenson N. The genetics of susceptibility to multiple sclerosis. Epidemiol. Rev. 1982;4:45–65.
    1. Spruance S. Pathogenesis of herpes simplex labialis: experimental induction of lesions with UV light. J. Clin. Microbiol. 1985;22:366–368.
    1. Stadt D, Kappos L, Rohrbach E, Heun R, Ratzka M. Occurrence of MRI abnormalities in patients with isolated optic neuritis. Eur. Neurol. 1990;30:305–309.
    1. Tisch R, Yang X.-D, Singer S.M, Liblau R.S, Fugger L, McDevitt H.O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993;366:72–75.
    1. Tovey M.G, Lenoir G, Begon-Lours J. Activation of latent Epstein-Barr virus by antibody to human IgM. Nature. 1978;276:270–272.
    1. van Eden W, Holoshitz J, Nevo Z, Frenkel A, Klajman A, Cohen I.R. Vol. 82. 1985. Arthritis induced by a T-lymphocyte clone that responds to mycobacterium tuberculosis and to cartilage proteoglycans; pp. 5117–5120. (Proc. Natl. Acad. Sci. USA).
    1. van Eden W, Thole J.E.R, van der Zee R, Noordzij A, van Embden J.D.A, Hensen E.J, Cohen I.R. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature. 1988;331:171–173.
    1. Vogt A.B, Kropshofer H, Kalbacher H, Kalbus M, Rammensee H.-G, Coligan J.E, Martin R. Ligand motifs of HLADRB5∗0101 and DRB1∗1501 molecules delineated from self-peptides. J. Immunol. 1994;151:1665–1673.
    1. Wekerle H, Linington C, Lassmann H, Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci. 1986;9:271–277.
    1. Wucherpfennig K.W, Weiner H.L, Hafler D.A. T-cell recognition of myelin basic protein. Immunol. Today. 1991;12:277–282.
    1. Wucherpfennig K.W, Sette A, Southwood S, Oseroff C, Matsui M, Strominger J.L, Hafler D.A. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 1994;179:279–290.
    1. Wucherpfennig K.W, Zhang J, Witek C, Matsui M, Modabber Y, Ota K, Hafler D.A. Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J. Immunol. 1994;150:5581–5592.
    1. Zamvil S.S, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 1990;8:579–621.
    1. Zhang J, Markovic S, Lacet B, Raus J, Weiner H.L, Hafler D.A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med. 1994;179:973–984.

Source: PubMed

3
Iratkozz fel