Timely Leukapheresis May Interfere with the "Fitness" of Lymphocytes Collected for CAR-T Treatment in High Risk DLBCL Patients

Mirko Farina, Marco Chiarini, Camillo Almici, Eugenia Accorsi Buttini, Francesco Zuccalà, Simone Piva, Irene Volonghi, Loris Poli, Simona Bernardi, Federica Colnaghi, Federica Re, Alessandro Leoni, Nicola Polverelli, Alessandro Turra, Enrico Morello, Anna Galvagni, Daniele Moratto, Duilio Brugnoni, Chiara Cattaneo, Emilio Ferrari, Andrea Bianchetti, Michele Malagola, Alessandro Re, Domenico Russo, Mirko Farina, Marco Chiarini, Camillo Almici, Eugenia Accorsi Buttini, Francesco Zuccalà, Simone Piva, Irene Volonghi, Loris Poli, Simona Bernardi, Federica Colnaghi, Federica Re, Alessandro Leoni, Nicola Polverelli, Alessandro Turra, Enrico Morello, Anna Galvagni, Daniele Moratto, Duilio Brugnoni, Chiara Cattaneo, Emilio Ferrari, Andrea Bianchetti, Michele Malagola, Alessandro Re, Domenico Russo

Abstract

The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematological diseases. However, approximately 60% of patients relapse after CAR-T cell therapy, and no clear cause for this failure has been identified. The objective of the Bio-CAR-T BS study (ClinicalTrials.gov: NCT05366569) is to improve our understanding of the lymphocyte harvest to maximize the quality of the CAR-T cell product. Of the 14 patients enrolled, 11 were diagnosed with DLBCL, 2 with PMBCL, and 1 with ALL. Five of 11 DLBCL patients met the criteria for "pre-emptive" Lymphocytes-apheresis (being at high risk of second relapse), and 6 were included in the standard-of-care Lymphocytes-apheresis group. Previous autologous stem cell transplantation (ASCT) and age were significantly different between the two groups. At the time of Lymphocyte-apheresis, patients in the "pre-emptive" group had more "fit" lymphocytes (higher CD4+/CD8+ ratio; higher naïve T cells levels) compared with standard group, probably due to the impact of ASCT. At the same time, also being older than 60 years results in a more "exhausted" lymphocyte profile. Overall, "pre-emptive" Ly-apheresis in DLBCL patients at high risk of relapse appears to be feasible and may allow the timely collection of "fit" lymphocytes for CAR-T cell manufacturing.

Keywords: CAR-T; Lymphocytes fitness; T-cells repertoire; pre-emptive lymphocytoapheresis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
BIO-CAR-T BS study flow chart. ALL, acute lymphoblastic leukemia; CAR, chimeric antigen receptor; CR, complete remission; DLBCL, diffuse large B-cell lymphoma; PMBCL, primary mediastinal B-cell lymphoma; PR, partial remission.
Figure 2
Figure 2
Ly-subsets in DLBCL patients who received “pre-emptive” (blue) or standard Ly-apheresis (red). (A) CD4+/CD8+ ratio. (B) CD4+ T cell subpopulations evaluated as absolute counts (cells/μL) and as a percentage. (C) CD8+ T cell subpopulations evaluated as absolute counts (cells/μL) and as a percentage. * = statistical significance (i.e., p < 0.05).
Figure 3
Figure 3
Ly-subsets in patients aged ≤60 years old (blue) and >60 years old (red). (A) CD4+/CD8+ ratio. (B) CD4+ T cell subpopulations evaluated as absolute counts (cells/μL) and as a percentage. (C) CD8+ T cell subpopulations evaluated as absolute counts (cells/μL) and as a percentage. * = statistical significance (i.e., p < 0.05); ** = statistical significance with p-value between 0.01 and 0.001. *** = statistical significance with p-value between 0.001 and 0.0001.

References

    1. Larson R.C., Maus M.V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer. 2021;21:145–161. doi: 10.1038/s41568-020-00323-z.
    1. Hopfinger G., Jäger U., Worel N. CAR-T Cell Therapy in Diffuse Large B Cell Lymphoma: Hype and Hope. HemaSphere. 2019;3:e185. doi: 10.1097/HS9.0000000000000185.
    1. Schuster S.J., Bishop M.R., Tam C.S., Waller E.K., Borchmann P., McGuirk J.P., Jäger U., Jaglowski S., Andreadis C., Westin J.R., et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019;380:45–56. doi: 10.1056/NEJMoa1804980.
    1. Locke F.L., Miklos D.B., Jacobson C.A., Perales M.-A., Kersten M.-J., Oluwole O.O., Ghobadi A., Rapoport A.P., McGuirk J., Pagel J.M., et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022;386:640–654. doi: 10.1056/NEJMoa2116133.
    1. Jacobson C.A., Hunter B.D., Redd R., Rodig S.J., Chen P.H., Wright K., Lipschitz M., Ritz J., Kamihara Y., Armand P., et al. Axicabtagene Ciloleucel in the Non-Trial Setting: Outcomes and Correlates of Response, Resistance, and Toxicity. J. Clin. Oncol. 2020;38:3095–3106. doi: 10.1200/JCO.19.02103.
    1. Vercellino L., Di Blasi R., Kanoun S., Tessoulin B., Rossi C., D’Aveni-Piney M., Obéric L., Bodet-Milin C., Bories P., Olivier P., et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2020;4:5607–5615. doi: 10.1182/bloodadvances.2020003001.
    1. Schuster S.J., Tam C.S., Borchmann P., Worel N., McGuirk J.P., Holte H., Waller E.K., Jaglowski S., Bishop M.R., Damon L.E., et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22:1403–1415. doi: 10.1016/S1470-2045(21)00375-2.
    1. Locke F.L., Ghobadi A., Jacobson C.A., Miklos D.B., Lekakis L.J., Oluwole O.O., Lin Y., Braunschweig I., Hill B.T., Timmerman J.M., et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
    1. Westin J.R., Kersten M.J., Salles G., Abramson J.S., Schuster S.J., Locke F.L., Andreadis C. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am. J. Hematol. 2021;96:1295–1312. doi: 10.1002/ajh.26301.
    1. Fraietta J.A., Lacey S.F., Orlando E.J., Pruteanu-Malinici I., Gohil M., Lundh S., Boesteanu A.C., Wang Y., O’connor R.S., Hwang W.T., et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 2018;24:563–571. doi: 10.1038/s41591-018-0010-1.
    1. Klaver Y., van Steenbergen S.C.L., Sleijfer S., Debets R., Lamers C.H.J. T cell maturation stage prior to and during GMP processing informs on CAR T cell expansion in patients. Front. Immunol. 2016;7:648. doi: 10.3389/fimmu.2016.00648.
    1. Garfall A.L., Dancy E.K., Cohen A.D., Hwang W.T., Fraietta J.A., Davis M.M., Levine B.L., Siegel D.L., Stadtmauer E.A., Vogl D.T., et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 2019;3:2812–2815. doi: 10.1182/bloodadvances.2019000600.
    1. Shah N.N., Fry T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019;16:372–385. doi: 10.1038/s41571-019-0184-6.
    1. Nie Y., Lu W., Chen D., Tu H., Guo Z., Zhou X., Li M., Tu S., Li Y. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomark. Res. 2020;8 doi: 10.1186/s40364-020-00197-1.
    1. Mehta P.H., Fiorenza S., Koldej R.M., Jaworowski A., Ritchie D.S., Quinn K.M. T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic Malignancy. Front. Immunol. 2021;12:4971. doi: 10.3389/fimmu.2021.780442.
    1. Gallimore A., Glithero A., Godkin A., Tissot A.C., Plückthun A., Elliott T., Hengartner H., Zinkernagel R. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 1998;187:1383–1393. doi: 10.1084/jem.187.9.1383.
    1. Singh N., Perazzelli J., Grupp S.A., Barrett D.M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 2016;8:320ra3. doi: 10.1126/scitranslmed.aad5222.
    1. Skert C., Perucca S., Chiarini M., Giustini V., Sottini A., Ghidini C., Martellos S., Cattina F., Rambaldi B., Cancelli V., et al. Sequential monitoring of lymphocyte subsets and of T- and B-cell neogenesis indexes to identify time-varying immunologic profiles in relation to graft-versus-host disease and relapse after allogeneic stem cell transplantation. PLoS ONE. 2017;12:e0175337. doi: 10.1371/journal.pone.0175337.
    1. Chow A., Perica K., Klebanoff C.A., Wolchok J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2022:1–16. doi: 10.1038/s41571-022-00689-z.
    1. Wherry E.J. T cell exhaustion. Nat. Immunol. 2011;12:492–499. doi: 10.1038/ni.2035.
    1. Bianchetti N., Tucci A., Re A., Pagani C., Cattaneo C., Miscio M., Facchetti F., Fisogni S., Balzarini P., Albano D., et al. Very Poor Outcome of Patients with Relapsed/Refractory Aggressive B Cell Lymphoma after Autologous Stem Cell Transplantation (ASCT) or High Dose of Methotrexate and Cytarabine (HD-MTX/ARA-C) Regimens in the Clinical Care Setting. Blood. 2018;132:4232. doi: 10.1182/blood-2018-99-119090.
    1. Neelapu S.S., Tummala S., Kebriaei P., Wierda W., Gutierrez C., Locke F.L., Komanduri K.V., Lin Y., Jain N., Daver N., et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018;15:47–62. doi: 10.1038/nrclinonc.2017.148.
    1. Cheson B.D., Fisher R.I., Barrington S.F., Cavalli F., Schwartz L.H., Zucca E., Lister T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014;32:3059–3067. doi: 10.1200/JCO.2013.54.8800.
    1. Kalos M., Levine B.L., Porter D.L., Katz S., Grupp S.A., Bagg A., June C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011;3:95ra73. doi: 10.1126/scitranslmed.3002842.
    1. Savoldo B., Ramos C.A., Liu E., Mims M.P., Keating M.J., Carrum G., Kamble R.T., Bollard C.M., Gee A.P., Mei Z., et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Investig. 2011;121:1822–1826. doi: 10.1172/JCI46110.
    1. Xu Y., Zhang M., Ramos C.A., Durett A., Liu E., Dakhova O., Liu H., Creighton C.J., Gee A.P., Heslop H.E., et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123:3750–3759. doi: 10.1182/blood-2014-01-552174.
    1. Jaeger U., Bishop M.R., Salles G., Schuster S.J., Maziarz R.T., Han X., Savchenko A., Roscoe N., Orlando E., Knoblock D., et al. Myc Expression and Tumor-Infiltrating T Cells Are Associated with Response in Patients (Pts) with Relapsed/Refractory Diffuse Large B-Cell Lymphoma (r/r DLBCL) Treated with Tisagenlecleucel in the Juliet Trial. Blood. 2020;136:48–49. doi: 10.1182/blood-2020-137045.
    1. Finney O.C., Brakke H., Rawlings-Rhea S., Hicks R., Doolittle D., Lopez M., Futrell B., Orentas R.J., Li D., Gardner R., et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J. Clin. Investig. 2019;129:2123–2132. doi: 10.1172/JCI125423.
    1. Sellmer L., Kovács J., Walter J., Kumbrink J., Neumann J., Kauffmann-Guerrero D., Kiefl R., Schneider C., Jung A., Behr J., et al. Markers of Immune Cell Exhaustion as Predictor of Survival in Surgically-Treated Early-Stage NSCLC. Front. Immunol. 2022;13:858212. doi: 10.3389/fimmu.2022.858212.
    1. Gisselbrecht C., Glass B., Mounier N., Gill D.S., Linch D.C., Trneny M., Bosly A., Ketterer N., Shpilberg O., Hagberg H., et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J. Clin. Oncol. 2010;28:4184–4190. doi: 10.1200/JCO.2010.28.1618.
    1. Hamlin P.A., Zelenetz A.D., Kewalramani T., Qin J., Satagopan J.M., Verbel D., Noy A., Portlock C.S., Straus D.J., Yahalom J., et al. Age-adjusted International Prognostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2003;102:1989–1996. doi: 10.1182/blood-2002-12-3837.
    1. Cooke R.E., Quinn K.M., Quach H., Harrison S., Prince H.M., Koldej R., Ritchie D. Conventional Treatment for Multiple Myeloma Drives Premature Aging Phenotypes and Metabolic Dysfunction in T Cells. Front. Immunol. 2020;11:2153. doi: 10.3389/fimmu.2020.02153.
    1. Fujiwara Y., Kato T., Hasegawa F., Sunahara M., Tsurumaki Y. The Past, Present, and Future of Clinically Applied Chimeric Antigen Receptor-T-Cell Therapy. Pharmaceuticals. 2022;15:207. doi: 10.3390/ph15020207.
    1. Suen H., Brown R., Yang S., Weatherburn C., Ho P.J., Woodland N., Nassif N., Barbaro P., Bryant C., Hart D., et al. Multiple myeloma causes clonal T-cell immunosenescence: Identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30:1716–1724. doi: 10.1038/leu.2016.84.

Source: PubMed

3
Iratkozz fel