A Linear 19-Mer Plant Defensin-Derived Peptide Acts Synergistically with Caspofungin against Candida albicans Biofilms

Tanne L Cools, Caroline Struyfs, Jan W Drijfhout, Soňa Kucharíková, Celia Lobo Romero, Patrick Van Dijck, Marcelo H S Ramada, Carlos Bloch Jr, Bruno P A Cammue, Karin Thevissen, Tanne L Cools, Caroline Struyfs, Jan W Drijfhout, Soňa Kucharíková, Celia Lobo Romero, Patrick Van Dijck, Marcelo H S Ramada, Carlos Bloch Jr, Bruno P A Cammue, Karin Thevissen

Abstract

Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-derived peptide that acts synergistically with caspofungin or anidulafungin against C. albicans as HsLin06_18, a 19-mer peptide derived from the C-terminal part of HsAFP1. The [caspofungin + HsLin06_18] combination significantly reduced in vitro biofilm formation of Candida glabrata and C. albicans on catheters, as well as biofilm formation of a caspofungin-resistant C. albicans strain. The [caspofungin + HsLin06_18] combination was not cytotoxic and reduced biofilm formation of C. albicans in vivo using a subcutaneous rat catheter model, as compared to control treatment. Mode of action research on the [caspofungin + HsLin06_18] combination pointed to caspofungin-facilitated HsLin06_18 internalization and immediate membrane permeabilization. All these findings point to broad-spectrum antibiofilm activity of a combination of HsLin06_18 and caspofungin.

Keywords: Candida; antimicrobial peptides; biofilms; catheters; fungal infections.

Figures

Figure 1
Figure 1
HsAFP1 core regions responsible for prevention of Candida albicans biofilm formation (red box) and synergy with caspofungin (blue box), identified by screening HsLin06-variants (Table 1) for both activities. Both regions are situated within the γ-core of plant defensins (yellow box). Gray regions represent conserved amino acids among plant defensins.
Figure 2
Figure 2
The [echinocandin + HsLin06_18] combination affects Candida albicans biofilms, determined in an in vitro microtiter plate assay. Dose-response curves of the echinocandin [caspofungin (A), anidulafungin (B) and micafungin (C)] are presented with different colors for different HsLin06_18 concentrations; orange, 1.25 μM, red, 0.313 μM, blue, 0.156 μM and black 0 μM HsLin06_18. Black arrows represent the HsLin06_18's potentiation effect on echinocandin's action, i.e., the shift of the echinocandin concentration needed for 50% reduction of metabolic activity between the echinocandin and the [echinocandin + 1.25 μM HsLin06_18] treatment. Data are means ± SEM for n = 3 independent experiments.
Figure 3
Figure 3
HsLin06_18-FITC uptake and membrane permeabilization in Candida albicans biofilms treated with the [caspofungin + HsLin06_18-FITC] combination. Confocal microscope images of 24 h treated C. albicans biofilms with 0.625 μM caspofungin (CASPO) and/or 0.5 μM HsLin06_18-FITC and 30 μg/mL propidium iode (PI). Bar: 5 μm.
Figure 4
Figure 4
Kinetics of HsLin06_18-FITC uptake and membrane permeabilization in planktonic Candida albicans cells treated with (A) 4.6 μM HsLin06_18-FITC (HsL-F), (B) 0.01 μM caspofungin (CASPO) or (C) its combination as well as 2 μg/mL propidium iodide (PI), determined via flow cytometry. For all treatments, the % of cells is presented that: only have permeabilized membranes (gray), both have permeabilized membranes and HsLin06_18-FITC associated to their surface or internalized (orange) or only HsLin06_18-FITC associated to their surface or internalized (black). Data are means ± SEM in presented for n = 3 independent experiments. To analyse significant differences in the size of the subpopulations between the t0 and other time points, one-way ANOVA followed by Dunnett multiple comparison was performed, with brackets (in the color of the corresponding subpopulation) representing significance for that subpopulation. Only the primary time point that is significantly different from t0 is presented, with *representing P < 0.05.
Figure 5
Figure 5
The [caspofungin + HsLin06_18] affects (A)Candida albicans, (B)Candida dubliniensis, (C)Candida krusei and (D)Candida glabrata biofilms in an in vitro microtiter plate assay, using XTT quantification. Dose-response curves of caspofungin are presented, with different colors for different HsLin06_18 concentrations; orange, 1.25 μM, red, 0.313 μM, blue, 0.156 μM, and black, 0 μM HsLin06_18. Black arrows represent the HsLin06_18's potentiation effect on caspofungin's action, i.e., the shift of the caspofungin concentration needed for 50% reduction of metabolic activity between the caspofungin and the [caspofungin + 1.25 μM HsLin06_18] treatment. Data are means ± SEM for n = 3 independent experiments.
Figure 6
Figure 6
The [caspofungin (CASPO) + HsLin06_18] affects Candida albicans(A) and C. glabrata(B) biofilms in an in vitro catheter assay. The amount of the viable biofilm cells on the catheters treated with 0.4 μM CASPO, 0.5 μM HsLin06_18, its combination or the control (0.5% DMSO) was determined via CFU counting. Horizontal lines indicate the median values for log10 numbers of CFU ± SEM obtained per catheter piece, for n = 3 independent experiments. Significant differences between all treatments were determined via one-way ANOVA followed by Tukey multiple comparison, with *representing P < 0.05.
Figure 7
Figure 7
Effect of intravenous administration of caspofungin (CASPO) and HsLin06_18 on Candida albicans biofilm formation inhibition, using catheter pieces in a subcutaneous rat catheter model. Rats, containing nine catheter pieces each, were treated with 0.25 mg/kg/day CASPO, 2.5 mg/kg/day HsLin06_18, its combination or the control (0.9% NaCl and 0.2% DMSO) for 7 days, after which survival of viable biofilm cells on the catheters was determined via CFU counting. Horizontal lines indicate the median values for log10 numbers of CFU and 95% CI obtained per catheter piece, for n = 27 catheter pieces. Significant differences between all treatments were determined via one-way ANOVA followed by Tukey multiple comparison, with *representing P < 0.05.

References

    1. Almeida M. S., Cabral K. M., Zingali R. B., Kurtenbach E. (2000). Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Arch. Biochem. Biophys. 378, 278–286. 10.1006/abbi.2000.1824
    1. Badrane H., Nguyen M. H., Clancy C. J. (2016). Highly dynamic and specific phosphatidylinositol 4,5-Bisphosphate, Septin, and cell wall integrity pathway responses correlate with caspofungin activity against Candida albicans. Antimicrob. Agents Chemother. 60, 3591–3600. 10.1128/AAC.02711-15
    1. Bink A., Pellens K., Cammue B. P., Thevissen K. (2011). Anti-biofilm strategies: how to eradicate Candida biofilms? Open Mycol. J. 5, 29–38. 10.2174/1874437001105010029
    1. Cauda R. (2009). Candidaemia in patients with an inserted medical device. Drugs 69(Suppl. 1), 33–38. 10.2165/11315520-000000000-00000
    1. Clark T. A., Hajjeh R. A. (2002). Recent trends in the epidemiology of invasive mycoses. Curr. Opin. Infect. Dis. 15, 569–574. 10.1097/00001432-200212000-00003
    1. De Cremer K., Staes I., Delattin N., Cammue B. P., Thevissen K., De Brucker K. (2015). Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Rev. Anti Infect. Ther. 13, 973–984. 10.1586/14787210.2015.1056162
    1. De Samblanx G. W., Fernandez del Carmen A., Sijtsma L., Plasman H. H., Schaaper W. M., Posthuma G. A., et al. . (1996). Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence. Pept. Res. 9, 262–268.
    1. Delattin N., De Brucker K., Vandamme K., Meert E., Marchand A., Chaltin P., et al. . (2014). Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms. J. Antimicrob. Chemother. 69, 1035–1044. 10.1093/jac/dkt449
    1. Deorukhkar S. C., Saini S., Mathew S. (2014). Non-albicans Candida infection: an emerging threat. Interdiscip. Perspect. Infect. Dis. 2014:615958. 10.1155/2014/615958
    1. Fiori B., Posteraro B., Torelli R., Tumbarello M., Perlin D. S., Fadda G., et al. . (2011). In vitro activities of anidulafungin and other antifungal agents against biofilms formed by clinical isolates of different Candida and Aspergillus species. Antimicrob. Agents Chemother. 55, 3031–3035. 10.1128/AAC.01569-10
    1. Fohrer C., Fornecker L., Nivoix Y., Cornila C., Marinescu C., Herbrecht R. (2006). Antifungal combination treatment: a future perspective. Int. J. Antimicrob. Agents 27(Suppl. 1), 25–30. 10.1016/j.ijantimicag.2006.03.016
    1. Fonzi W. A., Irwin M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    1. Garcia-Effron G., Park S., Perlin D. S. (2009). Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob. Agents Chemother. 53, 112–122. 10.1128/AAC.01162-08
    1. Goblyos A., Schimmel K. J., Valentijn A. R., Fathers L. M., Cordfunke R. A., Chan H. L., et al. . (2013). Development of a nose cream containing the synthetic antimicrobial peptide P60.4Ac for eradication of methicillin-resistant Staphylococcus aureus carriage. J. Pharm. Sci. 102, 3539–3544. 10.1002/jps.23695
    1. Gong X., Luan T., Wu X., Li G., Qiu H., Kang Y., et al. . (2016). Invasive candidiasis in intensive care units in China: risk factors and prognoses of Candida albicans and non-albicans Candida infections. Am. J. Infect. Control 44, e59–e63. 10.1016/j.ajic.2015.11.028
    1. Harris M. R., Coote P. J. (2010). Combination of caspofungin or anidulafungin with antimicrobial peptides results in potent synergistic killing of Candida albicans and Candida glabrata in vitro. Int. J. Antimicrob. Agents 35, 347–356. 10.1016/j.ijantimicag.2009.11.021
    1. Kaur M., Gupta V., Gombar S., Chander J., Sahoo T. (2015). Incidence, risk factors, microbiology of venous catheter associated bloodstream infections–a prospective study from a tertiary care hospital. Indian J. Med. Microbiol. 33, 248–254. 10.4103/0255-0857.153572
    1. Kaur R., Ma B., Cormack B. P. (2007). A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc. Natl. Acad. Sci. U.S.A. 104, 7628–7633. 10.1073/pnas.0611195104
    1. Knowles B. B., Howe C. C., Aden D. P. (1980). Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209, 497–499. 10.1126/science.6248960
    1. Kucharikova S., Vande Velde G., Himmelreich U., Van Dijck P. (2015). Candida albicans biofilm development on medically-relevant foreign bodies in a mouse subcutaneous model followed by bioluminescence imaging. J. Vis. Exp. 95:52239 10.3791/52239
    1. Lebeaux D., Fernandez-Hidalgo N., Chauhan A., Lee S., Ghigo J. M., Almirante B., et al. . (2014). Management of infections related to totally implantable venous-access ports: challenges and perspectives. Lancet Infect. Dis. 14, 146–159. 10.1016/S1473-3099(13)70266-4
    1. Mello E. O., Ribeiro S. F., Carvalho A. O., Santos I. S., Da Cunha M., Santa-Catarina C., et al. . (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62, 1209–1217. 10.1007/s00284-010-9847-3
    1. Moriarty T. F., Grainger D. W., Richards R. G. (2014). Challenges in linking preclinical anti-microbial research strategies with clinical outcomes for device-associated infections. Eur. Cell. Mater. 28, 112–128; discussion 128. 10.22203/eCM.v028a09
    1. Muadcheingka T., Tantivitayakul P. (2015). Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: correlation between cell surface hydrophobicity and biofilm forming activities. Arch. Oral Biol. 60, 894–901. 10.1016/j.archoralbio.2015.03.002
    1. Mukherjee P. K., Sheehan D. J., Hitchcock C. A., Ghannoum M. A. (2005). Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 18, 163–194. 10.1128/CMR.18.1.163-194.2005
    1. Nobile C. J., Johnson A. D. (2015). Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 69, 71–92. 10.1146/annurev-micro-091014-104330
    1. Odds F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52, 1. 10.1093/jac/dkg301
    1. Osborn R. W., De Samblanx G. W., Thevissen K., Goderis I., Torrekens S., Van Leuven F., et al. . (1995). Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae, and Saxifragaceae. FEBS Lett. 368, 257–262. 10.1016/0014-5793(95)00666-W
    1. Pappas P. G., Kauffman C. A., Andes D., Benjamin D. K., Jr., Calandra T. F., Edwards J. E., Jr., et al. . (2009). Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin. Infect. Dis. 48, 503–535. 10.1086/596757
    1. Percival S. L., McCarty S. M., Lipsky B. (2015). Biofilms and wounds: an overview of the evidence. Adv. Wound Care 4, 373–381. 10.1089/wound.2014.0557
    1. Perlin D. S. (2015). Echinocandin resistance in Candida. Clin. Infect. Dis. 61(Suppl. 6), S612–S617. 10.1093/cid/civ791
    1. Pfaller M. A., Boyken L., Hollis R. J., Kroeger J., Messer S. A., Tendolkar S., et al. . (2008). In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J. Clin. Microbiol. 46, 150–156. 10.1128/JCM.01901-07
    1. Ricicova M., Kucharikova S., Tournu H., Hendrix J., Bujdakova H., Van Eldere J., et al. . (2010). Candida albicans biofilm formation in a new in vivo rat model. Microbiology 156(Pt 3), 909–919. 10.1099/mic.0.033530-0
    1. Sagaram U. S., Pandurangi R., Kaur J., Smith T. J., Shah D. M. (2011). Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE 6:e18550. 10.1371/journal.pone.0018550
    1. Sardi J. C., Scorzoni L., Bernardi T., Fusco-Almeida A. M., Mendes Giannini M. J. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 62(Pt 1), 10–24. 10.1099/jmm.0.045054-0
    1. Sullivan D. J., Westerneng T. J., Haynes K. A., Bennett D. E., Coleman D. C. (1995). Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141(Pt 7), 1507–1521. 10.1099/13500872-141-7-1507
    1. Tavares P. M., Thevissen K., Cammue B. P., Francois I. E., Barreto-Bergter E., Taborda C. P., et al. . (2008). In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob. Agents Chemother. 52, 4522–4525. 10.1128/AAC.00448-08
    1. Thevissen K. (2016). How promising are combinatorial drug strategies in combating Candida albicans biofilms? Future Med. Chem. 8, 1383–1385. 10.4155/fmc-2016-0127
    1. Thevissen K., Kristensen H. H., Thomma B. P., Cammue B. P., Francois I. E. (2007). Therapeutic potential of antifungal plant and insect defensins. Drug Discov. Today 12, 966–971. 10.1016/j.drudis.2007.07.016
    1. Tsui C., Kong E. F., Jabra-Rizk M. A. (2016). Pathogenesis of Candida albicans Biofilm. Pathog. Dis. 74:ftw018. 10.1093/femspd/ftw018
    1. Udayalaxmi Jacobs S., D'Souza D. (2014). Comparison between virulence factors of Candida albicans and Non-albicans species of Candida isolated from genitourinary tract. J. Clin. Diagn. Res. 8, DC15–D17. 10.7860/JCDR/2014/10121.5137
    1. Uppuluri P., Srinivasan A., Ramasubramanian A., Lopez-Ribot J. L. (2011). Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob. Agents Chemother. 55, 3591–3593. 10.1128/AAC.01701-10
    1. Vriens K., Cools T. L., Harvey P. J., Craik D. J., Braem A., Vleugels J., et al. . (2015a). The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 75, 71–79. 10.1016/j.peptides.2015.11.001
    1. Vriens K., Cools T. L., Harvey P. J., Craik D. J., Spincemaille P., Cassiman D., et al. . (2015b). Synergistic activity of the plant Defensin HsAFP1 and Caspofungin against Candida albicans biofilms and planktonic cultures. PLoS ONE 10:e0132701. 10.1371/journal.pone.0132701
    1. Walsh T. J., Rex J. H. (2002). All catheter-related candidemia is not the same: assessment of the balance between the risks and benefits of removal of vascular catheters. Clin. Infect. Dis. 34, 600–602. 10.1086/338715
    1. Zeidler U., Bougnoux M. E., Lupan A., Helynck O., Doyen A., Garcia Z., et al. . (2013). Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. J. Antimicrob. Chemother. 68, 1285–1296. 10.1093/jac/dks538

Source: PubMed

3
Iratkozz fel