Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training-Exercise-Induced Adaptations and Signs of Perivascular Stress

Jakob L Nielsen, Ulrik Frandsen, Kasper Y Jensen, Tatyana A Prokhorova, Line B Dalgaard, Rune D Bech, Tobias Nygaard, Charlotte Suetta, Per Aagaard, Jakob L Nielsen, Ulrik Frandsen, Kasper Y Jensen, Tatyana A Prokhorova, Line B Dalgaard, Rune D Bech, Tobias Nygaard, Charlotte Suetta, Per Aagaard

Abstract

Aim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR training. The present study, therefore, aimed to examine the effect of short-term high-frequency BFR training on human skeletal muscle vascularization. Methods: Participants completed 3 weeks of high-frequency (one to two daily sessions) training consisting of either BFR exercise [(BFRE) n = 10, 22.8 ± 2.3 years; 20% one-repetition maximum (1RM), 100 mmHg] performed to concentric failure or work-matched free-flow exercise [(CON) n = 8, 21.9 ± 3.0 years; 20% 1RM]. Muscle biopsies [vastus lateralis (VL)] were obtained at baseline, 8 days into the intervention, and 3 and 10 days after cessation of the intervention to examine capillary and perivascular adaptations, as well as angiogenesis-related protein signaling and gene expression. Results: Capillary per myofiber and capillary area (CA) increased 21-24 and 25-34%, respectively, in response to BFRE (P < 0.05-0.01), while capillary density (CD) remained unchanged. Overall, these adaptations led to a consistent elevation (15-16%) in the capillary-to-muscle area ratio following BFRE (P < 0.05-0.01). In addition, evaluation of perivascular properties indicated thickening of the perivascular basal membrane following BFRE. No or only minor changes were observed in CON. Conclusion: This study is the first to show that short-term high-frequency, low-load BFRE can lead to microvascular adaptations (i.e., capillary neoformation and changes in morphology), which may contribute to the endurance effects previously documented with BFR training. The observation of perivascular membrane thickening suggests that high-frequency BFRE may be associated with significant vascular stress.

Keywords: angiogenesis; capillary; hypoxia; vascular remodeling; vascular stress.

Copyright © 2020 Nielsen, Frandsen, Jensen, Prokhorova, Dalgaard, Bech, Nygaard, Suetta and Aagaard.

Figures

FIGURE 1
FIGURE 1
Representative skeletal muscle cross sections displaying immunoreactivity for NG2 (red), CD31 (green), and 4’,6-diamidino-2-phenylindole (DAPI) (nuclear stain) (1A,1B) and Laminin (2A–2C). 1A,1B: Samples are from blood flow restriction exercise (BFRE) at baseline (Pre, 1A) and 8 days into the intervention (Mid8, 1B). Note the increase in the area of CD31C structures and myofibers as well as a similar number of CD31C structures, suggesting a stable capillary density (CD) and an increase in capillary/fiber and capillary cross-sectional area. 2A: Normal laminin morphology, baseline (Pre); 2B/2C: lowly/highly increased perivascular laminin immunoreactivity relative to baseline (2A).
FIGURE 2
FIGURE 2
Capillaries per myofiber, capillary density (CD, capillaries per mm2), capillary cross-sectional area (μm2), and capillary-to-muscle area ratio at baseline (Pre), 8 days into the training intervention (Mid8), and 3 and 10 days after cessation of training (Post3 and Post10, respectively). (A) Capillaries per myofiber, (B) CD (capillaries per mm2), (C) average capillary area, and (D) capillary-to-muscle area ratio. Pre to Mid/post differences: *P < 0.05, **P < 0.01, ***P < 0.001. Baseline-specific group difference: P < 0.05. Values are means ± SD; BFR: n = 10 at Mid8 n = 9; CON: n = 7.
FIGURE 3
FIGURE 3
Protein expression related to angiogenesis signaling at baseline (Pre), 8 days into the training intervention (Mid8), and 3 and 10 days after cessation of training (Post3 and Post10, respectively). Dark gray bars denotes blood flow-restricted group. (A) Vascular endothelial growth factor A (VEGF-A), (B) VEGF-D, (C) VEGF receptor 2 (VEGF-R2), (D) VEGF-R3, (E) angiopoietin-1 (ANGPT1), (F) ANGPT2, and (G) urokinase-type plasminogen activator receptor (uPAR). Pre to Mid/post differences: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. Values are means ± SD; BFR: n = 10 at Mid8 n = 9.
FIGURE 4
FIGURE 4
Protein expression related to vascular/extracellular matrix remodeling at baseline (Pre), 8 days into the training intervention (Mid8), and 3 and 10 days after cessation of training (Post3 and Post10, respectively). Dark gray bars denotes blood flow-restricted group. (A) Tissue inhibitor of matrix metalloproteinase (TIMP)-1, (B) TIMP-2, (C) matrix metalloproteinase (MMP)-1, (D) MMP-9, (E) granulocyte colony-stimulating factor (G-CSF), and (F) granulocyte-macrophage colony-stimulating factor (GM-CSF). Pre to Mid/post differences: ∗P < 0.05. Values are means ± SD; BFR: n = 10 at Mid8 n = 9.
FIGURE 5
FIGURE 5
mRNA expression related to angiogenesis and vascular/matrix remodeling at baseline (Pre), 8 days into the training intervention (Mid8), and 3 and 10 days after cessation of training (Post3 and Post10, respectively). Dark gray bars denotes blood flow-restricted group. (A) Vascular endothelial growth factor A (VEGF-A), (B) hypoxia-inducible factor-1α (HIF-1α), (C) VEGF receptor 2 (VEGF-R2), (D) heme oxygenase (HMOX)-1, (E) matrix metalloproteinase (MMP)-2, and (F) MMP-9. Pre to Mid/post differences: ∗P < 0.05, ∗∗P < 0.01. Values are geometric means ± SEM; BFR: n = 10 at Mid8 n = 9.

References

    1. Abe T., Fujita S., Nakajima T., Sakamaki M., Ozaki H., Ogasawara R., et al. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle Volume and VO2MAX in young men. J. Sports Sci. Med. 9 452–458.
    1. Baum O., Bigler M. (2016). Pericapillary basement membrane thickening in human skeletal muscles. Am. J. Physiol. Heart Circ. Physiol. 311 H654–H666. 10.1152/ajpheart.00048.2016
    1. Baum O., Sollberger C., Raaflaub A., Odriozola A., Spohr G., Frese S., et al. (2018). Increased capillary tortuosity and pericapillary basement membrane thinning in skeletal muscle of mice undergoing running wheel training. J. Exp. Biol. 221:jeb171819. 10.1242/jeb.171819
    1. Bjornsen T., Wernbom M., Kirketeig A., Paulsen G., Samnoy L., Baekken L., et al. (2019). Type 1 muscle fiber hypertrophy after blood flow-restricted training in powerlifters. Med. Sci. Sports Exerc. 51 288–298. 10.1249/MSS.0000000000001775
    1. Breuss J. M., Uhrin P. (2012). VEGF-initiated angiogenesis and the uPA/uPAR system. Cell Adh. Migr. 6 535–615. 10.4161/cam.22243
    1. Brown M. D., Jeal S., Bryant J., Gamble J. (2001). Modifications of microvascular filtration capacity in human limbs by training and electrical stimulation. Acta Physiol. Scand. 173 359–368. 10.1046/j.1365-201x.2001.00920.x
    1. Brzank K. D., Pieper K. S. (1986). [Effect of intensive, strength-building exercise training on the fine structure of human skeletal muscle capillaries]. Anat. Anz. 161 243–248.
    1. Centner C., Zdzieblik D., Dressler P., Fink B., Gollhofer A., Konig D. (2018). Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects. Free Radic. Res. 52 446–454. 10.1080/10715762.2018.1440293
    1. Charifi N., Kadi F., Féasson L., Costes F., Geyssant A., Denis C. (2004). Enhancement of microvessel tortuosity in the vastus lateralis muscle of old men in response to endurance training. J. Physiol. 554 559–569. 10.1113/jphysiol.2003.046953
    1. Christiansen D., Eibye K. H., Rasmussen V., Voldbye H. M., Thomassen M., Nyberg M. (2019). Cycling with blood flow restriction improves performance and muscle K(+) regulation and alters the effect of anti-oxidant infusion in humans. J. Physiol. 597 2421–2444. 10.1113/JP277657
    1. Egginton S. (2009). Invited review: activity-induced angiogenesis. Pflugers Arch. 457 963–977. 10.1007/s00424-008-0563-9
    1. Evans C., Vance S., Brown M. (2010). Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J. Sports Sci. 28 999–1007. 10.1080/02640414.2010.485647
    1. Fagiani E., Christofori G. (2013). Angiopoietins in angiogenesis. Cancer Lett. 328 18–26. 10.1016/j.canlet.2012.08.018
    1. Ferguson R. A., Hunt J. E. A., Lewis M. P., Martin N. R. W., Player D. J., Stangier C., et al. (2018). The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. Eur. J. Sport Sci. 18 397–406. 10.1080/17461391.2017.1422281
    1. Gidlof A., Lewis D. H., Hammersen F. (1988). The effect of prolonged total ischemia on the ultrastructure of human skeletal muscle capillaries. A morphometric analysis. Int. J. Microcirc Clin. Exp. 7 67–86.
    1. Gliemann L., Buess R., Nyberg M., Hoppeler H., Odriozola A., Thaning P., et al. (2015). Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients. Acta Physiol. 214 210–220. 10.1111/apha.12501
    1. Gorman J. L., Liu S. T. K., Slopack D., Shariati K., Hasanee A., Olenich S., et al. (2014). Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS One 9:e85537. 10.1371/journal.pone.0085537
    1. Green H., Goreham C., Ouyang J., Ball-Burnett M., Ranney D. (1999). Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am. J. Phys.l 276 R591–R596. 10.1152/ajpregu.1999.276.2.R591
    1. Gustafsson T. (2011). Vascular remodelling in human skeletal muscle. Biochem. Soc. Trans. 39 1628–1632. 10.1042/bst20110720
    1. Haas T. L., Nwadozi E. (2015). Regulation of skeletal muscle capillary growth in exercise and disease. Appl. Physiol. Nutr. Metab. 40 1221–1232. 10.1139/apnm-2015-0336
    1. Hiscock N., Fischer C. P., Pilegaard H., Pedersen B. K. (2003). Vascular endothelial growth factor mRNA expression and arteriovenous balance in response to prolonged, submaximal exercise in humans. Am. J. Physiol. Heart Circ. Physiol. 285 H1759–H1763.
    1. Hoier B., Hellsten Y. (2014). Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 21 301–314. 10.1111/micc.12117
    1. Hoier B., Nordsborg N., Andersen S., Jensen L., Nybo L., Bangsbo J., et al. (2012). Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J. Physiol. 590 595–606. 10.1113/jphysiol.2011.216135
    1. Holloway T. M., Snijders T., Van Kranenburg J., Van Loon L. J. C., Verdijk L. B. (2018). Temporal response of angiogenesis and hypertrophy to resistance training in young men. Med. Sci. Sports Exerc. 50 36–45. 10.1249/MSS.0000000000001409
    1. Hudlicka O., Garnham A., Shiner R., Egginton S. (2008). Attenuation of changes in capillary fine structure and leukocyte adhesion improves muscle performance following chronic ischaemia in rats. J. Physiol. 586 4961–4975. 10.1113/jphysiol.2008.158055
    1. Hudlicka O., Graciotti L., Fulgenzi G., Brown M. D., Egginton S., Milkiewicz M., et al. (2003). The effect of chronic skeletal muscle stimulation on capillary growth in the rat: are sensory nerve fibres involved? J. Physiol. 546 813–822. 10.1113/jphysiol.2002.030569
    1. Hunt J. E., Galea D., Tufft G., Bunce D., Ferguson R. A. (2013). Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J. Appl. Physiol. 115 403–411. 10.1152/japplphysiol.00040.2013
    1. Jakobsgaard J. E., Christiansen M., Sieljacks P., Wang J., Groennebaek T., De Paoli F., et al. (2018). Impact of blood flow-restricted bodyweight exercise on skeletal muscle adaptations. Clin. Physiol. Funct. Imaging 38(Suppl. 1), 965–975.
    1. Jensen L., Bangsbo J., Hellsten Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J. Physiol. 557 571–582. 10.1113/jphysiol.2003.057711
    1. Jetten N., Verbruggen S., Gijbels M. J., Post M. J., De Winther M. P., Donners M. M. (2014). Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17 109–118. 10.1007/s10456-013-9381-6
    1. Jozkowicz A., Huk I., Nigisch A., Weigel G., Weidinger F., Dulak J. (2002). Effect of prostaglandin-J(2) on VEGF synthesis depends on the induction of heme oxygenase-1. Antioxid. Redox Signal. 4 577–585. 10.1089/15230860260220076
    1. Kacin A., Strazar K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sports 21 e231–e241. 10.1111/j.1600-0838.2010.01260.x
    1. Klausen K., Andersen L. B., Pelle I. (1981). Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol. Scand. 113 9–16. 10.1111/j.1748-1716.1981.tb06854.x
    1. Kretschmar K., Engelhardt T. (1994). Swelling of capillary endothelial cells contributes to traumatic hemorrhagic shock-induced microvascular injury: a morphologic and morphometric analysis. Int. J. Microcirc. Clin. Exp. 14 45–49. 10.1159/000178205
    1. Larkin K. A., Macneil R. G., Dirain M., Sandesara B., Manini T. M., Buford T. W. (2012). Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med. Sci. Sports Exerc. 44 2077–2083. 10.1249/MSS.0b013e3182625928
    1. Mazzoni M. C., Borgstrom P., Warnke K. C., Skalak T. C., Intaglietta M., Arfors K. E. (1995). Mechanisms and implications of capillary endothelial swelling and luminal narrowing in low-flow ischemias. Int. J. Microcirc. Clin. Exp. 15 265–270. 10.1159/000179028
    1. Mccall G. E., Byrnes W. C., Dickinson A., Pattany P. M., Fleck S. J. (1996). Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J. Appl. Physiol. 81 2004–2012. 10.1152/jappl.1996.81.5.2004
    1. Mitchell E. A., Martin N. R. W., Turner M. C., Taylor C. W., Ferguson R. A. (2019). The combined effect of sprint interval training and postexercise blood flow restriction on critical power, capillary growth, and mitochondrial proteins in trained cyclists. J. Appl. Physiol. 126 51–59. 10.1152/japplphysiol.01082.2017
    1. Nielsen J. L., Aagaard P., Bech R. D., Nygaard T., Hvid L. G., Wernbom M., et al. (2012). Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J. Physiol. 590 4351–4361. 10.1113/jphysiol.2012.237008
    1. Nielsen J. L., Aagaard P., Prokhorova T. A., Nygaard T., Bech R. D., Suetta C., et al. (2017a). Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J. Physiol. 595 4857–4873. 10.1113/JP273907
    1. Nielsen J. L., Frandsen U., Prokhorova T., Bech R. D., Nygaard T., Suetta C., et al. (2017b). Delayed effect of blood flow-restricted resistance training on rapid force capacity. Med. Sci. Sports Exerc. 49 1157–1167. 10.1249/MSS.0000000000001208
    1. Onoue Y., Izumiya Y., Hanatani S., Ishida T., Arima Y., Yamamura S., et al. (2018). Akt1-mediated muscle growth promotes blood flow recovery after hindlimb ischemia by enhancing heme oxygenase-1 in neighboring cells. Circ. J. 82 2905–2912. 10.1253/circj.CJ-18-0135
    1. Patterson S. D., Hughes L., Warmington S., Burr J., Scott B. R., Owens J. (2019). Blood flow restriction exercise position stand: considerations of methodology. Application, and Safety. Front. Physiol. 10:533. 10.3389/fphys.2019.00533
    1. Patterson S. D., Leggate M., Nimmo M. A., Ferguson R. A. (2013). Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur. J. Appl. Physiol. 113 713–719. 10.1007/s00421-012-2479-5
    1. Peschen M., Zeiske D., Laaff H., Weiss J. M., Schopf E., Vanscheidt W. (1996). Clinical histochemical and immunohistochemical investigation of the capillary basal membrane in chronic venous insufficiency. Acta Derm. Venereol. 76 433–436.
    1. Raskin P., Pietri A. O., Unger R., Shannon W. A., Jr. (1983). The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with Type I diabetes mellitus. N. Engl. J. Med. 309 1546–1550. 10.1056/nejm198312223092504
    1. Sosenko J. M., Miettinen O. S., Williamson J. R., Gabbay K. H. (1984). Muscle capillary basement-membrane thickness and long-term glycemia in type I diabetes mellitus. N. Engl. J. Med. 311 694–698. 10.1056/nejm198409133111102
    1. Takada S., Okita K., Suga T., Omokawa M., Kadoguchi T., Sato T. (2012). Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J. Appl. Physiol. 113 199–205. 10.1152/japplphysiol.00149.2012
    1. Takano H., Morita T., Iida H., Asada K., Kato M., Uno K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 95 65–73. 10.1007/s00421-005-1389-1
    1. Takarada Y., Takazawa H., Sato Y., Takebayashi S., Tanaka Y., Ishii N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. 88 2097–2106. 10.1152/jappl.2000.88.6.2097
    1. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:Research0034.
    1. Wagner P. D. (2011). The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochem. Soc. Trans. 39 1556–1559. 10.1042/BST20110646
    1. Ward B. J., Mccarthy A. (1995). Endothelial cell “swelling” in ischaemia and reperfusion. J. Mol. Cell. Cardiol. 27 1293–1300. 10.1016/s0022-2828(05)82391-0
    1. Williamson J. R., Hoffmann P. L., Kohrt W. M., Spina R. J., Coggan A. R., Holloszy O. (1996). Endurance exercise training decreases capillary basement membrane width in older nondiabetic and diabetic adults. J. Appl. Physiol. 80 747–753.

Source: PubMed

3
Iratkozz fel