Calprotectin as a New Sensitive Marker of Neutrophilic Inflammation in Patients with Bronchiolitis Obliterans

S P Jerkic, F Michel, H Donath, E Herrmann, R Schubert, M Rosewich, S Zielen, S P Jerkic, F Michel, H Donath, E Herrmann, R Schubert, M Rosewich, S Zielen

Abstract

Introduction: Bronchiolitis obliterans (BO) is a chronic disease in which persistent inflammation leads to obstruction and obliteration of the small airways. The aim of this study was to evaluate the value of calprotectin as an inflammatory marker in induced sputum.

Methods: Twenty-eight patients suffering from BO and 18 healthy controls were examined. Lung function was measured by spirometry, body plethysmography, and lung clearance index (LCI). The induced sputum was obtained, cell counts were performed, and cytokines were measured using cytometric bead array (CBA). Calprotectin was quantified in the sputum and serum samples using commercially available sandwich ELISA.

Results: Spirometry parameters including forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and maximum expiratory flow rate at 25% vital capacity (MEF25) were significantly lower in BO patients than in healthy controls, whereas the reserve volume (RV), RV to total lung capacity ratio (RV/TLC), and LCI were significantly increased. In sputum, calprotectin levels, neutrophils, and IL-8 were significantly elevated. Calprotectin levels correlated strongly with IL-8 and other biomarkers, neutrophils FEV1 and MEF25. In serum, calprotectin was significantly diminished in BO patients compared to controls.

Conclusion: Lung function is severely impaired in BO patients. Calprotectin is significantly elevated in the sputum of BO patients and reflects ongoing neutrophilic inflammation.

Conflict of interest statement

The authors have the following conflicts to declare. Stefan Zielen received honoraria for lectures and consultations from the following companies: CSL Behring, AstraZeneca; Sanofi-Aventis GmbH; Boehringer Ingelheim; Stallergenes Greer; Allergopharma GmbH & Co. KG, Allergy Therapeutics, bene-Arzneimittel GmbH; Novartis AG; GlaxoSmithKline GmbH; ALK-Abelló Arzneimittel GmbH; Lofarma GmbH, IMS Health GmbH & Co; Engelhard Arzneimittel GmbH & Co. KG and Biotest Pharma GmbH. Ralf Schubert received fees for consulting from Biotest Pharma GmbH and Vifor Pharma Deutschland GmbH. Martin Rosewich received fees for consulting from Allergy Therapeutics, Sanofi-Aventis GmbH, GlaxoSmithKline GmbH, Engelhard Arzneimittel GmbH & Co. KG, and Allergopharma GmbH & Co. KG. There are no conflicts of interest to report for the authors Pera-Silvija Jerkic, Felix Michel., Helena Donath, and Eva Herrmann. The authors confirm that the above stated conflicts of interest did not cause any bias in the present publication.

Copyright © 2020 S. P. Jerkic et al.

Figures

Figure 1
Figure 1
Jerkic et al.
Figure 2
Figure 2
Jerkic et al.
Figure 3
Figure 3
Jerkic et al.

References

    1. Barker A. F., Bergeron A., Rom W. N., Hertz M. I. Obliterative bronchiolitis. The New England Journal of Medicine. 2014;370(19):1820–1828. doi: 10.1056/NEJMra1204664.
    1. Kurland G., Michelson P. Bronchiolitis obliterans in children. Pediatric Pulmonology. 2005;39(3):193–208. doi: 10.1002/ppul.20145.
    1. Yu J. Postinfectious bronchiolitis obliterans in children: lessons from bronchiolitis obliterans after lung transplantation and hematopoietic stem cell transplantation. Korean Journal of Pediatrics. 2015;58(12):459–465. doi: 10.3345/kjp.2015.58.12.459.
    1. Smith K. J., Fan L. L. Insights into post-infectious bronchiolitis obliterans in children. Thorax. 2006;61(6):462–463. doi: 10.1136/thx.2005.052670.
    1. Rosewich M., Zissler U. M., Kheiri T., et al. Airway inflammation in children and adolescents with bronchiolitis obliterans. Cytokine. 2015;73(1):156–162. doi: 10.1016/j.cyto.2014.10.026.
    1. Kavaliunaite E., Aurora P. Diagnosing and managing bronchiolitis obliterans in children. Expert Review of Respiratory Medicine. 2019;13(5):481–488. doi: 10.1080/17476348.2019.1586537.
    1. Aurora P., Bush A., Gustafsson P., et al. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. American Journal of Respiratory and Critical Care Medicine. 2005;171(3):249–256. doi: 10.1164/rccm.200407-895OC.
    1. Horsley A., Gustafsson P., Macleod K. A., et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax. 2008;63(2):135–140. doi: 10.1136/thx.2007.082628.
    1. Kent L., Reix P., Innes J. A., et al. Lung clearance index: evidence for use in clinical trials in cystic fibrosis. Journal of Cystic Fibrosis. 2014;13(2):123–138. doi: 10.1016/j.jcf.2013.09.005.
    1. Rayment J. H., Stanojevic S., Davis S. D., Retsch-Bogart G., Ratjen F. Lung clearance index to monitor treatment response in pulmonary exacerbations in preschool children with cystic fibrosis. Thorax. 2018;73(5):451–458. doi: 10.1136/thoraxjnl-2017-210979.
    1. Lahzami S., Schoeffel R. E., Pechey V., et al. Small airways function declines after allogeneic haematopoietic stem cell transplantation. The European Respiratory Journal. 2011;38(5):1180–1188. doi: 10.1183/09031936.00018311.
    1. Nyilas S., Baumeler L., Tamm M., et al. Inert gas washout in bronchiolitis obliterans following hematopoietic cell transplantation. Chest. 2018;154(1):157–168. doi: 10.1016/j.chest.2017.12.009.
    1. Koh Y. Y., Jung D. E., Koh J. Y., Kim J. Y., Yoo Y., Kim C. K. Bronchoalveolar cellularity and interleukin-8 levels in measles bronchiolitis obliterans. Chest. 2007;131(5):1454–1460. doi: 10.1378/chest.06-0188.
    1. Voganatsi A., Panyutich A., Miyasaki K. T., Murthy R. K. Mechanism of extracellular release of human neutrophil calprotectin complex. Journal of Leukocyte Biology. 2001;70(1):130–134.
    1. Sands B. E. Biomarkers of inflammation in inflammatory bowel disease. Gastroenterology. 2015;149(5):1275–1285.e2. doi: 10.1053/j.gastro.2015.07.003.
    1. Rosenfeld G., Greenup A. J., Round A., et al. FOCUS: Future of fecal calprotectin utility study in inflammatory bowel disease. World Journal of Gastroenterology. 2016;22(36):8211–8218. doi: 10.3748/wjg.v22.i36.8211.
    1. Wanger J., Clausen J. L., Coates A., et al. Standardisation of the measurement of lung volumes. The European Respiratory Journal. 2005;26(3):511–522. doi: 10.1183/09031936.05.00035005.
    1. Schulze J., Voss S., Zissler U., Rose M. A., Zielen S., Schubert R. Airway responses and inflammation in subjects with asthma after four days of repeated high-single-dose allergen challenge. Respiratory Research. 2012;13(1):p. 78. doi: 10.1186/1465-9921-13-78.
    1. Koc-Günel S., Schubert R., Zielen S., Rosewich M. Cell distribution and cytokine levels in induced sputum from healthy subjects and patients with asthma after using different nebulizer techniques. BMC Pulmonary Medicine. 2018;18(1):p. 115. doi: 10.1186/s12890-018-0683-8.
    1. Eickmeier O., Huebner M., Herrmann E., et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine. 2010;50(2):152–157. doi: 10.1016/j.cyto.2010.02.004.
    1. Eckrich J., Herrmann E., Voss S., Schubert R., Zielen S., Rosewich M. Short-term variation of lung function and airway inflammation in children and adolescents with bronchiolitis obliterans. Lung. 2016;194(4):571–579. doi: 10.1007/s00408-016-9907-y.
    1. Michel O., Doyen V., Leroy B., et al. Expression of calgranulin A/B heterodimer after acute inhalation of endotoxin: proteomic approach and validation. BMC Pulmonary Medicine. 2013;13(1):p. 65. doi: 10.1186/1471-2466-13-65.
    1. Gray R. D., Imrie M., Boyd A. C., Porteous D., Innes J. A., Greening A. P. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. Journal of Cystic Fibrosis. 2010;9(3):193–198. doi: 10.1016/j.jcf.2010.01.005.
    1. Schnapp Z., Hartman C., Livnat G., Shteinberg M., Elenberg Y. Decreased fecal calprotectin levels in cystic fibrosis patients after antibiotic treatment for respiratory exacerbation. Journal of Pediatric Gastroenterology and Nutrition. 2019;68(2):282–284. doi: 10.1097/MPG.0000000000002197.
    1. Pruenster M., Vogl T., Roth J., Sperandio M. S100A8/A9: from basic science to clinical application. Pharmacology & Therapeutics. 2016;167:120–131. doi: 10.1016/j.pharmthera.2016.07.015.
    1. Peterson-Carmichael S. L., Harris W. T., Goel R., et al. Association of lower airway inflammation with physiologic findings in young children with cystic fibrosis. Pediatric Pulmonology. 2009;44(5):503–511. doi: 10.1002/ppul.21044.
    1. Eckrich J., Zissler U. M., Serve F., et al. Airway inflammation in mild cystic fibrosis. Journal of Cystic Fibrosis. 2017;16(1):107–115. doi: 10.1016/j.jcf.2016.05.016.
    1. O'Donnell R. A., Peebles C., Ward J. A., et al. Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax. 2004;59(10):837–842. doi: 10.1136/thx.2003.019349.

Source: PubMed

3
Iratkozz fel