30-day readmission, antibiotics costs and costs of delay to adequate treatment of Enterobacteriaceae UTI, pneumonia, and sepsis: a retrospective cohort study

Marya D Zilberberg, Brian H Nathanson, Kate Sulham, Weihong Fan, Andrew F Shorr, Marya D Zilberberg, Brian H Nathanson, Kate Sulham, Weihong Fan, Andrew F Shorr

Abstract

Background: Enterobacteriaceae are common pathogens in pneumonia, sepsis and urinary tract infection (UTI). Though rare, carbapenem resistance (CRE) among these organisms complicates efforts to ensure adequate empiric antimicrobial therapy. In turn this negatively impacts such outcomes as mortality and hospital costs. We explored proportion of total costs represented by antibiotics, 30-day readmission rates, and per-day costs of inadequate antimicrobial coverage among patients with Enterobacteriaceae pneumonia, sepsis and/or UTI in the context of inappropriate (IET) vs. appropriate empiric (non-IET) therapy and carbapenem resistance (CRE) vs. susceptibility (CSE).

Methods: We conducted a retrospective cohort study in the Premier Research database (2009-2013) of 175 US hospitals. We included all adult patients admitted with a culture-confirmed UTI, pneumonia, or sepsis as principal diagnosis, or as a secondary diagnosis in the setting of respiratory failure. Patients with hospital acquired infections or transfers from other acute facilities were excluded. IET was defined as failure to administer an antibiotic therapy in vitro active against the culture-confirmed pathogen within 2 days of admission.

Results: Among 40,137 patients with Enterobacteriaceae infections (54.2% UTI), 4984 (13.2%) received IET. CRE (3.1%) was more frequent in patients given IET (13.0%) than non-IET (1.6%, p < 0.001). The proportions of total costs represented by antibiotics were similar in IET and non-IET (3.3% vs. 3.4%, p = 0.01), and higher among the group with CRE than CSE (4.2% vs. 3.4%, p < 0.001). The 30-day readmission rates were higher in both IET than non-IET (25.6% vs. 21.1%, p < 0.001) and CRE than CSE (29.7% vs. 21.5%, p < 0.001) groups. Each additional day of inadequate therapy cost an additional $766 (95% CI $661, $870, p < 0.001) relative to adequate treatment.

Conclusions: In this large US cohort of Enterobacteriaceae infections, the cost of antibiotics was a small component of total costs, irrespective of whether empiric treatment was appropriate or whether a CRE was isolated. In contrast, each extra day of inadequate treatment added >$750 to hospital costs. Both CRE and IET were associated with an increased risk of readmission within 30 days.

Keywords: Costs; Enterobacteriaceae; Pneumonia; Readmission; Sepsis; UTI.

Conflict of interest statement

Ethics approval and consent to participate

This study utilized an already existing HIPAA-compliant fully de-identified data, and, therefore, it was exempt from ethics review.

Consent for publication

Not applicable.

Competing interests

Dr. Zilberberg is a consultant to The Medicines Company. Her employer, EviMed Research Group, LLC, has received research grant support from The Medicines Company.

Dr. Nathanson is an employee of OptiStatim, LLC, who received grant support from EviMed Research Group, LLC, for conducting the analyses.

Ms. Fan and Ms. Sulham are employees of and stockholders in The Medicines Company.

Dr. Shorr is a consultant to and has received research grant support from The Medicines Company.

Drs. Zilberberg and Shorr have received grant support and/or have served as consultants to Merck, Tetraphase, Pfizer, Astellas, Shionogi and Theravance.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Available at Accessed January 8, 2016.
    1. National Nosocomial Infections Surveillance (NNIS) system report. Am J Infect Control. 2004;32:470. doi: 10.1016/j.ajic.2004.10.001.
    1. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48:4606–4610. doi: 10.1128/AAC.48.12.4606-4610.2004.
    1. Zilberberg MD, Shorr AF. Secular trends in gram-negative resistance among urinary tract infection hospitalizations in the United States, 2000-2009. Infect Control Hosp Epidemiol. 2013;34:940–946. doi: 10.1086/671740.
    1. Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med. 2013;8:559–563.
    1. CDDEP: The Center for Disease Dynamics, Economics and Policy. Resistance Map: Acinetobacter baumannii Overview. Available at . Accessed 8 Jan 2016.
    1. Zilberberg MD, Kollef MH, Shorr AF. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: a survey study. J Hosp Med. 2016;11:21–26. doi: 10.1002/jhm.2477.
    1. Micek ST, Kollef KE, Reichley RM, et al. Health care-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrob Agents Chemother. 2007;51:3568–3573. doi: 10.1128/AAC.00851-07.
    1. Iregui M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–268. doi: 10.1378/chest.122.1.262.
    1. Alvarez-Lerma F. ICU-acquired pneumonia study group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med. 1996;22:387–394. doi: 10.1007/BF01712153.
    1. Zilberberg MD, Shorr AF, Micek MT, Mody SH, Kollef MH. Antimicrobial therapy escalation and hospital mortality among patients with HCAP: a single center experience. Chest. 2008;134:963–968. doi: 10.1378/chest.08-0842.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115:462–474. doi: 10.1378/chest.115.2.462.
    1. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med. 2003;31:2742–2751. doi: 10.1097/01.CCM.0000098031.24329.10.
    1. Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med. 2003;115:529–535. doi: 10.1016/j.amjmed.2003.07.005.
    1. Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, Pérez XL, Sirvent JM. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–866. doi: 10.1164/rccm.200812-1912OC.
    1. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18(6):596. doi: 10.1186/s13054-014-0596-8.
    1. Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in gram-negative sepsis increases hospital length of stay. Crit Care Med. 2011;39:46–51. doi: 10.1097/CCM.0b013e3181fa41a7.
    1. Zhang D, Micek ST, Kollef MH. Time to appropriate antibiotic therapy is an independent determinant of postinfection ICU and hospital lengths of stay in patients with sepsis. Crit Care Med. 2015;43:2133–2140. doi: 10.1097/CCM.0000000000001140.
    1. Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect Dis. in press
    1. Meddings J, Saint S, McMahon LF. Hospital-acquired catheter-associated urinary tract infection: documentation and coding issues may reduce financial impact of Medicare’s new payment policy. Infect Control Hosp Epidemiol. 2010;31:627–633. doi: 10.1086/652523.
    1. Rothberg MB, Pekow PS, Priya A, et al. Using highly detailed administrative data to predict pneumonia mortality. PLoS One. 2014;9(1):e87382. doi: 10.1371/journal.pone.0087382.
    1. Rothberg MB, Haessler S, Lagu T, et al. Outcomes of patients with healthcare-associated pneumonia: worse disease or sicker patients? Infect Control Hosp Epidemiol. 2014;35(Suppl 3):S107–S115. doi: 10.1086/677829.
    1. Rothberg MB, Zilberberg MD, Pekow PS, et al. Association of guideline-based antimicrobial therapy and outcomes in healthcare-associated pneumonia. J Antimicrob Chemother. 2015;70:1573–1579. doi: 10.1093/jac/dku533.
    1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554. doi: 10.1056/NEJMoa022139.
    1. Zilberberg MD, Shorr AF. Impact of prior probabilities of MRSA as an infectious agent on the accuracy of the emerging molecular diagnostic tests: a model simulation. BMJ Open. 2012;2(6)
    1. Shorr AF, Zilberberg MD. Role for risk-scoring tools in identifying resistant pathogens in pneumonia: reassessing the value of healthcare-associated pneumonia as a concept. Curr Opin Pulm Med. 2015;21:232–238. doi: 10.1097/MCP.0000000000000159.

Source: PubMed

3
Iratkozz fel