Three-dimensional mapping of cortical bone thickness in subjects with different vertical facial dimensions

Mais Medhat Sadek, Noha Ezat Sabet, Islam Tarek Hassan, Mais Medhat Sadek, Noha Ezat Sabet, Islam Tarek Hassan

Abstract

Background: The purpose of this study was to determine differences in cortical bone thickness among subjects with different vertical facial dimensions using cone beam computed tomography (CBCT).

Methods: From 114 pre-treatment CBCT scans, 48 scans were selected to be included in the study. CBCT-synthesized lateral cephalograms were used to categorize subjects into three groups based on their vertical skeletal pattern. Cortical bone thickness (CBT) at two vertical levels (4 and 7 mm) from the alveolar crest were measured in the entire tooth-bearing region in the maxilla and mandible.

Results: Significant group differences were detected with high-angle subjects having significantly narrower inter-radicular CBT at some sites as compared to average- and low-angle subjects.

Conclusions: Inter-radicular cortical bone is thinner in high-angle than in average- or low-angle subjects in few selected sites at the vertical height in which mini-implants are commonly inserted for orthodontic anchorage.

Keywords: CBCT; Cortical thickness; Facial type; Mini-implants.

Figures

Fig. 1
Fig. 1
CBCT-synthesized lateral cephalometric radiograph
Fig. 2
Fig. 2
Orientation of views for the inter-radicular measurements. a Orientation of sagittal slice. b Orientation of axial slice. c Orientation of coronal slice
Fig. 3
Fig. 3
Coronal section through the inter-radicular area between upper right first and second molars. Buccal cortical plate thickness at 4 mm (measurement 3) and at 7 mm (measurement 1) apical to the crest of the alveolar bone. Palatal cortical plate thickness at 4 mm (measurement 4) and at 7 mm (measurement 2) apical to the crest of the alveolar bone

References

    1. Sommerfeldt DW, Rubin CT. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001;10(Suppl 2):S86–95.
    1. Buschang P, Throckmorton G. Influence of jaw muscle strength on malocclusion. In: Sachdeva RCL, editor. Orthodontics for the next millennium. Glendora, Calif: Ormco; 1997.
    1. Sato H, Kawamura A, Yamaguchi M, Kasai K. Relationship between masticatory function and internal structure of the mandible based on computed tomography findings. Am J Orthod Dentofacial Orthop. 2005;128:766–73. doi: 10.1016/j.ajodo.2005.05.046.
    1. Bresin A. Effects of masticatory muscle function and bite-raising on mandibular morphology in the growing rat. Swed Dent J Suppl. 2001;150:1–49.
    1. Masumoto T, Hayashi I, Kawamura A, Tanaka A, Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. Eur J Orthod. 2001;23:15–23. doi: 10.1093/ejo/23.1.15.
    1. Park J, Cho HJ. Three-dimensional evaluation of interradicular spaces and cortical bone thickness for the placement and initial stability of microimplants in adults. Am J Orthod Dentofacial Orthop. 2009;136:314. doi: 10.1016/j.ajodo.2009.04.015.
    1. Alrbata RH, Yu W, Kyung HM. Biomechanical effectiveness of cortical bone thickness on orthodontic microimplant stability: an evaluation based on the load share between cortical and cancellous bone. Am J Orthod Dentofacial Orthop. 2014;146:175–82. doi: 10.1016/j.ajodo.2014.04.018.
    1. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic miniimplant. Clin Oral Implants Res. 2006;17:109–14. doi: 10.1111/j.1600-0501.2005.01211.x.
    1. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implant. Int J Oral Maxillofac Implants. 2007;22:779–84.
    1. Farnsworth D, Rossouw PE, Ceen RF, Buschang PH. Cortical bone thickness at common miniscrew implant placement sites. Am J Orthod Dentofacial Orthop. 2011;139:495–503. doi: 10.1016/j.ajodo.2009.03.057.
    1. Fayed MMS, Pazera P, Katsaros C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010;80:939–951. doi: 10.2319/121009-709.1.
    1. Martinelli FL, Luiz RR, Faria M, Nojima LI. Anatomic variability in alveolar sites for skeletal anchorage. Am J Orthod Dentofacial Orthop. 2010;138:252. doi: 10.1016/j.ajodo.2010.04.018.
    1. Baumgaertel S, Hans MG. Buccal cortical bone thickness for mini-implant placement. Am J Orthod Dentofacial Orthop. 2009;136:230–5. doi: 10.1016/j.ajodo.2007.10.045.
    1. Wei X, Zhao L, Xu Z, Tang T, Zhao Z. Effects of cortical bone thickness at different healing times on microscrew stability. Angle Orthod. 2011;81:760–6. doi: 10.2319/111610-667.1.
    1. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124:373–8. doi: 10.1016/S0889-5406(03)00565-1.
    1. Horner KA, Behrents R, Kim KB, Buschangd PH. Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. Am J Orthod Dentofacial Orthop. 2012;142:170–8. doi: 10.1016/j.ajodo.2012.03.021.
    1. Ozdemir F, Tozlu M, Germec-Cakan D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am J Orthod Dentofacial Orthop. 2013;143:190–6. doi: 10.1016/j.ajodo.2012.09.013.
    1. Shafey AR. Lateral and frontal cephalometric templates and norms for Egyptian adults: reconstructed cone beam views. Master thesis. Cairo: Cairo University; 2011.
    1. Motoyoshi M, Matsuoka M, Shimizu N. Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg. 2007;36:695–9. doi: 10.1016/j.ijom.2007.03.009.
    1. Swasty D, Lee J, Huang JC, Maki K, Gansky SA, Hatcher D, Miller AJ. Cross-sectional human mandibular morphology as assessed in vivo by cone-beam computed tomography in patients with different vertical facial dimensions. Am J Orthod Dentofacial Orthop. 2011;139:e377–e389. doi: 10.1016/j.ajodo.2009.10.039.
    1. Sadek MM, Sabet NE, Hassan IT. Alveolar bone mapping in subjects with different vertical facial dimensions. Eur J Orthod. 2015;37(2):194–201. doi: 10.1093/ejo/cju034.
    1. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131:9–15. doi: 10.1016/j.ajodo.2005.02.032.
    1. Schätzle M, Männchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res. 2009;20:1351–9. doi: 10.1111/j.1600-0501.2009.01754.x.
    1. Molen AD. Considerations in the use of cone-beam computed tomography for buccal bone measurements. Am J Orthod Den¬tofacial Orthop. 2010;137:S130–5. doi: 10.1016/j.ajodo.2010.01.015.

Source: PubMed

3
Iratkozz fel