What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19?

Alexandro Guterres, Carlos Henrique de Azeredo Lima, Renan Lyra Miranda, Mônica Roberto Gadelha, Alexandro Guterres, Carlos Henrique de Azeredo Lima, Renan Lyra Miranda, Mônica Roberto Gadelha

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a pandemic associated with substantial morbidity and mortality. Despite of this, no vaccine or approved drug is available to eradicate the virus. In this manuscript, we present an alternative study area that may contribute to development of diagnostic biomarkers and therapeutic targets for COVID-19. We analyzed sixty SARS-CoV-2 genomes to identify regions that could work as virus-encoded miRNA seed sponges and potentially bind to human miRNA seed sites and prevent interaction with their native targets thereby relieving native miRNA suppression. MicroRNAs (miRNAs) are evolutionally conserved single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate differentiation, development and activation of immune cells in both innate and adaptive immunity. We find 34 miRNAs for positive-sense viral RNA and 45 miRNAs for negative-sense that can strongly bind to certain key SARS-CoV-2 genes. The disruption and dysfunction of miRNAs may perturb the immune response and stimulate the release of inflammatory cytokines altering the cellular response to viral infection. Previous studies demonstrate that miRNAs have the potential to be used as diagnostic and therapeutic biomarkers. Therefore, its discovery and validation are essential for improving the diagnosis of infection and clinical monitoring in COVID-19.

Keywords: COVID-19; SARS-CoV-2; biomarkers; microRNA; therapeutic targets.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 Elsevier B.V. All rights reserved.

References

    1. Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004 doi: 10.1016/S0092-8674(04)00045-5.
    1. Bertrams W., Griss K., Han M., Seidel K., Klemmer A., Sittka-Stark A., Hippenstiel S., Suttorp N., Finkernagel F., Wilhelm J., Greulich T., Vogelmeier C.F., Vera J., Schmeck B. Transcriptional analysis identifies potential biomarkers and molecular regulators in pneumonia and COPD exacerbation. Sci. Rep. 2020 doi: 10.1038/s41598-019-57108-0.
    1. Boldin M.P., Taganov K.D., Rao D.S., Yang L., Zhao J.L., Kalwani M., Garcia-Flores Y., Luong M., Devrekanli A., Xu J., Sun G., Tay J., Linsley P.S., Baltimore D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 2011;208:1189–1201. doi: 10.1084/jem.20101823.
    1. Ellwanger D.C., Büttner F.A., Mewes H.W., Stümpflen V. The sufficient minimal set of miRNA seed types. Bioinformatics. 2011 doi: 10.1093/bioinformatics/btr149.
    1. Girardi E., López P., Pfeffer S. On the Importance of Host MicroRNAs During Viral Infection. Front. Genet. 2018;9 doi: 10.3389/fgene.2018.00439.
    1. Huang S.-Y., Huang C.-H., Chen C.-J., Chen T.-W., Lin C.-Y., Lin Y.-T., Kuo S.-M., Huang C.-G., Lee L.-A., Chen Y.-H., Chen M.-F., Kuo R.-L., Shih S.-R. Novel Role for miR-1290 in Host Species Specificity of Influenza a Virus. Mol. Ther. Nucleic Acids. 2019;17:10–23. doi: 10.1016/j.omtn.2019.04.028.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 doi: 10.1016/S0140-6736(20)30183-5.
    1. Jopling C.L. Modulation of Hepatitis C Virus RNA abundance by a Liver-Specific MicroRNA. Science. 2005;309:1577–1581. doi: 10.1126/science.1113329. (80)
    1. Rupaimoole R., Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017 doi: 10.1038/nrd.2016.246.
    1. Saha A., Bhagyawant S.S., Parida M., Dash P.K. Vector-delivered artificial miRNA effectively inhibited replication of Chikungunya virus. Antivir. Res. 2016 doi: 10.1016/j.antiviral.2016.08.019.
    1. Trobaugh D.W., Gardner C.L., Sun C., Haddow A.D., Wang E., Chapnik E., Mildner A., Weaver S.C., Ryman K.D., Klimstra W.B. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014;506:245–248. doi: 10.1038/nature12869.
    1. WHO . World Health Organization; 2020. Coronavirus Disease 2019 (COVID-19) Situation Report-61.
    1. Zheng Z., Ke X., Wang M., He S., Li Q., Zheng C., Zhang Z., Liu Y., Wang H. Human MicroRNA hsa-miR-296-5p Suppresses Enterovirus 71 Replication by Targeting the Viral Genome. J. Virol. 2013 doi: 10.1128/jvi.02655-12.

Source: PubMed

3
Iratkozz fel