The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection

Rasoul Mirzaei, Farzad Mahdavi, Fariba Badrzadeh, Seyed Reza Hosseini-Fard, Maryam Heidary, Ali Salimi Jeda, Tayeb Mohammadi, Mahdane Roshani, Rasoul Yousefimashouf, Hossein Keyvani, Mohammad Darvishmotevalli, Melika Zarei Sani, Sajad Karampoor, Rasoul Mirzaei, Farzad Mahdavi, Fariba Badrzadeh, Seyed Reza Hosseini-Fard, Maryam Heidary, Ali Salimi Jeda, Tayeb Mohammadi, Mahdane Roshani, Rasoul Yousefimashouf, Hossein Keyvani, Mohammad Darvishmotevalli, Melika Zarei Sani, Sajad Karampoor

Abstract

The novel coronavirus disease 2019 (COVID-19) pandemic has imposed significant public health problems for the human populations worldwide after the 1918 influenza A virus (IVA) (H1N1) pandemic. Although numerous efforts have been made to unravel the mechanisms underlying the coronavirus, a notable gap remains in our perception of the COVID-19 pathogenesis. The innate and adaptive immune systems have a pivotal role in the fate of viral infections, such as COVID-19 pandemic. MicroRNAs (miRNAs) are known as short noncoding RNA molecules and appear as indispensable governors of almost any cellular means. Several lines of evidence demonstrate that miRNAs participate in essential mechanisms of cell biology, regulation of the immune system, and the onset and progression of numerous types of disorders. The immune responses to viral respiratory infections (VRIs), including influenza virus (IV), respiratory syncytial virus (RSV), and rhinovirus (RV), are correlated with the ectopic expression of miRNAs. Alterations of the miRNA expression in epithelial cells may contribute to the pathogenesis of chronic and acute airway infections. Hence, analyzing the role of these types of nucleotides in antiviral immune responses and the characterization of miRNA target genes might contribute to understanding the mechanisms of the interplay between the host and viruses, and in the future, potentially result in discovering therapeutic strategies for the prevention and treatment of acute COVID-19 infection. In this article, we present a general review of current studies concerning the function of miRNAs in different VRIs, particularly in coronavirus infection, and address all available therapeutic prospects to mitigate the burden of viral infections.

Keywords: COVID-19; Immune response; MicroRNAs; Respiratory viruses; SARS-CoV-2.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020. Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
The antiviral immune response and role of miRNAs. TLR, Toll-like receptor; RIG1, Retinoic acid-inducible gene I; MAD5, melanoma differentiation-associated protein 5; Mitochondrial antiviral-signaling protein; TRAF3, TNF receptor-associated factor3; TRAF6, TNF receptor-associated factor6; IKK, IκB kinase; TANK-binding kinase 1; IRF3, Interferon regulatory factor 3; IFN, Interferon; IFNAR1, interferon-α/β receptor 1; STAT1, Signal transducer and activator of transcription 1; STAT2, Signal transducer and activator of transcription 2; IRF9, Interferon regulatory factor 9; ISG, interferon-stimulated gene; miRNAs, microRNAs.
Fig. 2
Fig. 2
Cellular activation following respiratory syncytial virus infection. JAK/STAT, Janus kinase/Signal transducer and activator of transcription; NF-KB, nuclear factor-kappa B; IFN, Interferon; RSV, respiratory syncytial virus.

References

    1. Srivastava N., Baxi P., Ratho R., Saxena S.K. Springer; 2020. Global Trends in Epidemiology of Coronavirus Disease 2019 (COVID-19), Coronavirus Disease 2019 (COVID-19) pp. 9–21.
    1. T.M. Nguyen, Y. Zhang, P.P. Pandolfi, Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses, Nature Publishing Group, 2020.
    1. Sardar T., Ghosh I., Rodó X., Chattopadhyay J. A realistic two-strain model for MERS-CoV infection uncovers the high risk for epidemic propagation. PLoS Neglected Trop. Dis. 2020;14(2):e0008065.
    1. K. Shirato, N. Nao, H. Katano, I. Takayama, S. Saito, F. Kato, H. Katoh, M. Sakata, Y. Nakatsu, Y. Mori, Development of genetic diagnostic methods for novel coronavirus 2019 (nCoV-2019) in Japan, Japanese J. Infect. Dis. (2020) JJID. 2020.061.
    1. A. Ivashchenko, A. Rakhmetullina, D. Aisina, How miRNAs can protect humans from coronaviruses COVID-19, SARS-CoV, and MERS-CoV, 2020.
    1. Mirzaei R., Mohammadzadeh R., Mahdavi F., Badrzadeh F., Kazemi S., Ebrahimi M., Soltani F., Kazemi S., Jeda A.S., Darvishmotevalli M. Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Int. Immunopharmacol. 2020:106928.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497–506.
    1. Goodarzi P., Mahdavi F., Mirzaei R., Hasanvand H., Sholeh M., Zamani F., Sohrabi M., Tabibzadeh A., Jeda A.S., Niya M.H.K. Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. Int. Immunopharmacol. 2020:106885.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470–473.
    1. Mirzaei R., Goodarzi P., Asadi M., Soltani A., Aljanabi H.A.A., Jeda A.S., Dashtbin S., Jalalifar S., Mohammadzadeh R., Teimoori A. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020;72(10):2097–2111.
    1. Petrosillo N., Viceconte G., Ergonul O., Ippolito G., Petersen E. COVID-19, SARS and MERS: are they closely related? Clin. Microbiol. Infect. 2020
    1. T.W.H. Organization, Coronavirus disease (COVID-19) pandemic, 2020. .
    1. Zhang J., Li S., Li L., Li M., Guo C., Yao J., Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom., Proteom. Bioinform. 2015;13(1):17–24.
    1. Mirzaei R., Mohammadzadeh R., Mirzaei H., Sholeh M., Karampoor S., Abdi M., Alikhani M.Y., Kazemi S., Ahmadyousefi Y., Jalalifar S. Role of microRNAs in Staphylococcus aureus infection: potential biomarkers and mechanism. IUBMB Life. 2020
    1. Raisch J., Darfeuille-Michaud A., Nguyen H.T.T. Role of microRNAs in the immune system, inflammation and cancer. World J. Gastroenterol.: WJG. 2013;19(20):2985.
    1. Głobińska A., Pawełczyk M., Kowalski M.L. MicroRNAs and the immune response to respiratory virus infections. Exp. Rev. Clin. Immunol. 2014;10(7):963–971.
    1. Kumar S., Nyodu R., Maurya V.K., Saxena S.K. Host immune response and immunobiology of human SARS-CoV-2 infection. Coronavirus Dis. 2019 (COVID-19) 2020:43–53.
    1. Rasoul M., Rokhsareh M., Mohammad S.M., Sajad K., Ahmadreza M. The human immune system against Staphylococcus epidermidis. Critical Rev.™ Immunol. 2019;39(3)
    1. Mirzaei R., Sadeghi J., Talebi M., Irajian G. Prevalence of atlE, ica, mecA, and mupA Genes in Staphylococcus epidermidis isolates. Infect. Dis. Clin. Practice. 2017;25(1):37–40.
    1. Channappanavar R., Zhao J., Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res. 2014;59(1–3):118–128.
    1. Kumar S., Maurya V.K., Prasad A.K., Bhatt M.L., Saxena S.K. Structural, glycosylation and antigenic variation between, 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV) Virusdisease. 2020:1–9.
    1. C.K.-f. Li, H. Wu, H. Yan, S. Ma, L. Wang, M. Zhang, X. Tang, N.J. Temperton, R.A. Weiss, J.M. Brenchley, T cell responses to whole SARS coronavirus in humans, J. Immunol. 181(8) (2008) 5490–5500.
    1. Li G., Chen X., Xu A. Profile of specific antibodies to the SARS-associated coronavirus. New Engl. J. Med. 2003;349(5):508–509.
    1. Yong C.Y., Ong H.K., Yeap S.K., Ho K.L., Tan W.S. Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus. Front. Microbiol. 2019;10:1781.
    1. Lee S., Stokes K.L., Currier M.G., Sakamoto K., Lukacs N.W., Celis E., Moore M.L. Vaccine-elicited CD8+ T cells protect against respiratory syncytial virus strain A2-line19F-induced pathogenesis in BALB/c mice. J. Virol. 2012;86(23):13016–13024.
    1. Kuri T., Weber F. Interferon interplay helps tissue cells to cope with SARS-coronavirus infection. Virulence. 2010;1(4):273–275.
    1. Coleman C.M., Sisk J.M., Halasz G., Zhong J., Beck S.E., Matthews K.L., Venkataraman T., Rajagopalan S., Kyratsous C.A., Frieman M.B. CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome. J. Virol. 2017;91(1):e01825–e1916.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020
    1. Allegra A., Di Gioacchino M., Tonacci A., Musolino C., Gangemi S. Immunopathology of SARS-CoV-2 infection: immune cells and mediators, prognostic factors, and immune-therapeutic implications. Int. J. Mol. Sci. 2020;21(13):4782.
    1. Mirzaei R., Karampoor S., Sholeh M., Moradi P., Ranjbar R., Ghasemi F. A contemporary review on pathogenesis and immunity of COVID-19 infection. Mol. Biol. Rep. 2020;47(7):5365–5376.
    1. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., Liu X., Zhao L., Dong E., Song C. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Clin. Infect. Dis. 2020
    1. Zheng H.-Y., Zhang M., Yang C.-X., Zhang N., Wang X.-C., Yang X.-P., Dong X.-Q., Zheng Y.-T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 2020:1–3.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respirat. Med. 2020;8(4):420–422.
    1. Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta. 2020;509:280–287.
    1. Cameron M.J., Ran L., Xu L., Danesh A., Bermejo-Martin J.F., Cameron C.M., Muller M.P., Gold W.L., Richardson S.E., Poutanen S.M. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J. Virol. 2007;81(16):8692–8706.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033–1034.
    1. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820.
    1. Sha Q., Truong-Tran A.Q., Plitt J.R., Beck L.A., Schleimer R.P. Activation of airway epithelial cells by toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 2004;31(3):358–364.
    1. Taganov K.D., Boldin M.P., Chang K.-J., Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. 2006;103(33):12481–12486.
    1. Sonkoly E., Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases. J. Cell Mol. Med. 2009;13(1):24–38.
    1. Tili E., Michaille J.-J., Calin G.A. Expression and function of micro RNAs in immune cells during normal or disease state. Int. J. Med. Sci. 2008;5(2):73.
    1. Zhou T., Garcia J.G., Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Translat. Res. 2011;157(4):180–190.
    1. Nahid M.A., Pauley K.M., Satoh M., Chan E.K. miR-146a is critical for endotoxin-induced tolerance implication in innate immunity. J. Biol. Chem. 2009;284(50):34590–34599.
    1. Oglesby I.K., McElvaney N.G., Greene C.M. MicroRNAs in inflammatory lung disease-master regulators or target practice? Respir. Res. 2010;11(1):148.
    1. Bazzoni F., Rossato M., Fabbri M., Gaudiosi D., Mirolo M., Mori L., Tamassia N., Mantovani A., Cassatella M.A., Locati M. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. 2009;106(13):5282–5287.
    1. Liu G., Friggeri A., Yang Y., Park Y.-J., Tsuruta Y., Abraham E. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc. Natl. Acad. Sci. 2009;106(37):15819–15824.
    1. Slater L., Bartlett N.W., Haas J.J., Zhu J., Message S.D., Walton R.P., Sykes A., Dahdaleh S., Clarke D.L., Belvisi M.G. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog. 2010;6(11)
    1. Ouda R., Onomoto K., Takahasi K., Edwards M.R., Kato H., Yoneyama M., Fujita T. Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through down-regulation of the very low density lipoprotein receptor. J. Biol. Chem. 2011;286(29):26210–26219.
    1. Anglicheau D., Muthukumar T., Suthanthiran M. MicroRNAs: small RNAs with big effects. Transplantation. 2010;90(2):105.
    1. E. Sonkoly, M. Ståhle, A. Pivarcsi, MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation, in: Seminars in cancer biology, Elsevier, 2008, pp. 131–140.
    1. Li Q.-J., Chau J., Ebert P.J., Sylvester G., Min H., Liu G., Braich R., Manoharan M., Soutschek J., Skare P. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129(1):147–161.
    1. Allantaz F., Cheng D.T., Bergauer T., Ravindran P., Rossier M.F., Ebeling M., Badi L., Reis B., Bitter H., D'Asaro M. Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS ONE. 2012;7(1)
    1. Curtale G., Citarella F., Carissimi C., Goldoni M., Carucci N., Fulci V., Franceschini D., Meloni F., Barnaba V., Macino G. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood. 2010;115(2):265–273.
    1. Tsai C.-Y., Allie S.R., Zhang W., Usherwood E.J. MicroRNA miR-155 affects antiviral effector and effector Memory CD8 T cell differentiation. J. Virol. 2013;87(4):2348–2351.
    1. Lind E.F., Elford A.R., Ohashi P.S. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. J. Immunol. 2013;190(3):1210–1216.
    1. Leon-Icaza S.A., Zeng M., Rosas-Taraco A.G. microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1(1):1.
    1. Renwick N., Schweiger B., Kapoor V., Liu Z., Villari J., Bullmann R., Miething R., Briese T., Lipkin W.I. A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany. J. Infect. Dis. 2007;196(12):1754–1760.
    1. Rossmann M.G., Arnold E., Erickson J.W., Frankenberger E.A., Griffith J.P., Hecht H.-J., Johnson J.E., Kamer G., Luo M., Mosser A.G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317(6033):145–153.
    1. Calvén J., Yudina Y., Uller L. Rhinovirus and dsRNA induce RIG-I-like receptors and expression of interferon β and λ1 in human bronchial smooth muscle cells. PLoS ONE. 2013;8(4)
    1. Dweep H., Sticht C., Gretz N. In-silico algorithms for the screening of possible microRNA binding sites and their interactions. Curr. Genom. 2013;14(2):127–136.
    1. Megremis S., Taka S., Oulas A., Kotoulas G., Iliopoulos I., Papadopoulos N.G. O20-Human rhinovirus replication-dependent induction of micro-RNAs in human bronchial epithelial cells. Clin. Translat. Allergy. 2014;4(1):O20.
    1. Bondanese V.P., Francisco-Garcia A., Bedke N., Davies D.E., Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World J. Biol. Chem. 2014;5(4):437.
    1. Bossert B., Conzelmann K.-K. Respiratory syncytial virus (RSV) nonstructural (NS) proteins as host range determinants: a chimeric bovine RSV with NS genes from human RSV is attenuated in interferon-competent bovine cells. J. Virol. 2002;76(9):4287–4293.
    1. P.L. Collins, G.W. Wertz, Human respiratory syncytial virus genome and gene products, Concepts in Viral Pathogenesis II, Springer, 1986, pp. 40–46.
    1. Fuentes S., Tran K.C., Luthra P., Teng M.N., He B. Function of the respiratory syncytial virus small hydrophobic protein. J. Virol. 2007;81(15):8361–8366.
    1. Falsey A.R., Hennessey P.A., Formica M.A., Cox C., Walsh E.E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 2005;352(17):1749–1759.
    1. Glezen W.P., Taber L.H., Frank A.L., Kasel J.A. Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child. 1986;140(6):543–546.
    1. Kim H.W., Canchola J.G., Brandt C.D., Pyles G., Chanock R.M., Jensen K., Parrott R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969;89(4):422–434.
    1. Rossi G.A., Silvestri M., Colin A.A. Respiratory syncytial virus infection of airway cells: role of microRNAs. Pediatr. Pulmonol. 2015;50(7):727–732.
    1. Inchley C.S., Sonerud T., Fjærli H.O., Nakstad B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect. Dis. 2015;15(1):150.
    1. Thornburg N.J., Hayward S.L., Crowe J.E. Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-κB. MBio. 2012;3(6):e00220–e312.
    1. Bakre A., Mitchell P., Coleman J.K., Jones L.P., Saavedra G., Teng M., Tompkins S.M., Tripp R.A. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J. Gen. Virol. 2012;93(Pt 11):2346.
    1. Prins J., Wolthers K., Kamphuisen P., Rosendaal F., Loffeld R., van der Putten A., Janssen M., Laheij R., Jansen J., de Boer W. Human metapneumovirus: a new pathogen in children and adults 177. Medicine (Baltimore) 2004;2(1):1.6.
    1. Bhella D., Ralph A., Murphy L.B., Yeo R.P. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J. Gen. Virol. 2002;83(8):1831–1839.
    1. van den Hoogen B.G., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Analysis of the genomic sequence of a human metapneumovirus. Virology. 2002;295(1):119–132.
    1. Gern J.E., Rosenthal L.A., Sorkness R.L., Lemanske R.F., Jr Effects of viral respiratory infections on lung development and childhood asthma. J. Allergy Clin. Immunol. 2005;115(4):668–674.
    1. Martinez F.D. Heterogeneity of the association between lower respiratory illness in infancy and subsequent asthma. Proc. Am. Thoracic Soc. 2005;2(2):157–161.
    1. Williams J.V., Harris P.A., Tollefson S.J., Halburnt-Rush L.L., Pingsterhaus J.M., Edwards K.M., Wright P.F., Crowe J.E., Jr Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 2004;350(5):443–450.
    1. Deng J., Ptashkin R.N., Wang Q., Liu G., Zhang G., Lee I., Lee Y.S., Bao X. Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. Mol. Therapy-Nucl. Acids. 2014;3
    1. W.C.o.t.S.W.H.O.C.o.C.A.o.H.I.w.A.I.A. Virus, Update on avian influenza A (H5N1) virus infection in humans, New Engl. J. Med. 358(3) (2008) 261–273.
    1. Horimoto T., Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 2005;3(8):591–600.
    1. García-García J., Ramos C. Influenza, an existing public health problem. Salud Publica Mex. 2006;48(3):244–267.
    1. Song L., Liu H., Gao S., Jiang W., Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J. Virol. 2010;84(17):8849–8860.
    1. Izzard L., Stambas J. Harnessing the power of miRNAs in influenza A virus research. Br. J. Virol. 2015;2:28.
    1. Ma Y.J., Yang J., Fan X.L., Zhao H.B., Hu W., Li Z.P., Yu G.C., Ding X.R., Wang J.Z., Bo X.C. Cellular micro RNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J. Cell Mol. Med. 2012;16(10):2539–2546.
    1. Nakamura S., Horie M., Daidoji T., Honda T., Yasugi M., Kuno A., Komori T., Okuzaki D., Narimatsu H., Nakaya T. Influenza A virus-induced expression of a GalNAc transferase, GALNT3, via MicroRNAs is required for enhanced viral replication. J. Virol. 2016;90(4):1788–1801.
    1. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol. 2015;235(2):185–195.
    1. Tahamtan A., Inchley C.S., Marzban M., Tavakoli-Yaraki M., Teymoori-Rad M., Nakstad B., Salimi V. The role of microRNAs in respiratory viral infection: friend or foe? Rev. Med. Virol. 2016;26(6):389–407.
    1. Ren L., Zhang Y., Li J., Xiao Y., Zhang J., Wang Y., Chen L., Paranhos-Baccalà G., Wang J. Genetic drift of human coronavirus OC43 spike gene during adaptive evolution. Sci. Rep. 2015;5:11451.
    1. Lai F.W., Stephenson K.B., Mahony J., Lichty B.D. Human coronavirus OC43 nucleocapsid protein binds MicroRNA 9 and potentiates NF-κB activation. J. Virol. 2014;88(1):54–65.
    1. Mallick B., Ghosh Z., Chakrabarti J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS ONE. 2009;4(11)
    1. Banik G., Khandaker G., Rashid H. Middle East respiratory syndrome coronavirus “MERS-CoV”: current knowledge gaps. Paediatr. Respir. Rev. 2015;16(3):197–202.
    1. Hasan M.M., Akter R., Ullah M., Abedin M., Ullah G., Hossain M. A computational approach for predicting role of human microRNAs in MERS-CoV genome. Adv. Bioinform. 2014;2014
    1. Zhang X., Chu H., Wen L., Shuai H., Yang D., Wang Y., Hou Y., Zhu Z., Yuan S., Yin F. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg. Microbes Infect. 2020;9(1):733–746.
    1. Dickey L.L., Worne C.L., Glover J.L., Lane T.E., O’Connell R.M. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J. Neuroinflam. 2016;13(1):240.
    1. Lecellier C.-H., Dunoyer P., Arar K., Lehmann-Che J., Eyquem S., Himber C., Saïb A., Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science. 2005;308(5721):557–560.
    1. Otsuka M., Jing Q., Georgel P., New L., Chen J., Mols J., Kang Y.J., Jiang Z., Du X., Cook R. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity. 2007;27(1):123–134.
    1. Ahluwalia J.K., Khan S.Z., Soni K., Rawat P., Gupta A., Hariharan M., Scaria V., Lalwani M., Pillai B., Mitra D. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology. 2008;5(1):117.
    1. Pedersen I.M., Cheng G., Wieland S., Volinia S., Croce C.M., Chisari F.V., David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007;449(7164):919–922.
    1. Xu J., Zhao S., Teng T., Abdalla A.E., Zhu W., Xie L., Wang Y., Guo X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020;12(2):244.
    1. M.A.-A.-K. Khan, M.R.U. Sany, M.S. Islam, M.S. Mehebub, A.B. Islam, Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2 and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19, bioRxiv (2020).
    1. Islam M.S., Khan M.A.A.K., Murad M.W., Karim M., Islam A.B.M.M.K. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J. Med. Virol. 2019;91(9):1584–1594.
    1. Mishra R., Kumar A., Ingle H., Kumar H. The interplay between viral-derived miRNAs and host immunity during infection. Front. Immunol. 2019;10
    1. E. Wyler, K. Mösbauer, V. Franke, A. Diag, L.T. Gottula, R. Arsie, F. Klironomos, D. Koppstein, S. Ayoub, C. Buccitelli, Bulk and single-cell gene expression profiling of SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic intervention, bioRxiv (2020).
    1. Badry A., Jaspers V.L., Waugh C.A. Environmental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: insights into new immunomodulative mechanisms. J. Immunotoxicol. 2020;17(1):86–93.
    1. Dickey L.L., Hanley T.M., Huffaker T.B., Ramstead A.G., O'Connell R.M., Lane T.E. MicroRNA 155 and viral-induced neuroinflammation. J. Neuroimmunol. 2017;308:17–24.
    1. Gottwein E. Springer; 2013. Roles of microRNAs in the Life Cycles of Mammalian Viruses, Intrinsic Immunity; pp. 201–227.
    1. Mehta A., Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol. 2016;16(5):279.
    1. Thai T.-H., Calado D.P., Casola S., Ansel K.M., Xiao C., Xue Y., Murphy A., Frendewey D., Valenzuela D., Kutok J.L. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–608.
    1. Zhou H., Huang X., Cui H., Luo X., Tang Y., Chen S., Wu L., Shen N. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood, J. Am. Soc. Hematol. 2010;116(26):5885–5894.
    1. Woods P.S., Doolittle L.M., Rosas L.E., Nana-Sinkam S.P., Tili E., Davis I.C. Increased expression of microRNA-155-5p by alveolar type II cells contributes to development of lethal ARDS in H1N1 influenza A virus-infected mice. Virology. 2020
    1. A. Shiek, P. Paramasivam, K. Raj, V. Kumar, R. Murugesan, V. RamaKrishanan, Interplay of host regulatory network on SARS-CoV-2 binding and replication machinery, bioRxiv (2020).
    1. R. Sardar, D. Satish, S. Birla, D. Gupta, Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis, bioRxiv (2020).
    1. Z. Liu, J. Wang, Y. Xu, M. Guo, K. Mi, R. Xu, Y. Pei, Q. Zhang, X. Luan, Z. Hu, Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2, arXiv preprint arXiv:2004.04874 (2020).
    1. Chow J.T.-S., Salmena L. Prediction and analysis of SARS-CoV-2-targeting microRNA in human lung epithelium. Genes. 2020;11(9):1002.
    1. J. Sabbatinelli, A. Giuliani, G. Matacchione, S. Latini, N. Laprovitera, G. Pomponio, A. Ferrarini, S.S. Baroni, M. Pavani, M. Moretti, Decreased serum levels of inflammaging marker miR-146a are associated with clinical response to tocilizumab in COVID-19 patients, medRxiv (2020).
    1. Ames M.K., Atkins C.E., Pitt B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019;33(2):363–382.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020
    1. Novel C.P.E.R.E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi. 2020;41(2):145.
    1. Lu D., Chatterjee S., Xiao K., Riedel I., Wang Y., Foo R., Bär C., Thum T. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J. Mol. Cell. Cardiol. 2020;148:46–49.
    1. Matarese A., Gambardella J., Sardu C., Santulli G. miR-98 regulates TMPRSS2 expression in human endothelial cells: key implications for COVID-19. Biomedicines. 2020;8(11):462.
    1. A. Bouchie, First microRNA mimic enters clinic, Nature Publishing Group, 2013.
    1. Mobergslien A., Sioud M. Exosome-derived miRNAs and cellular miRNAs activate innate immunity. J. Innate Immun. 2014;6(1):105–110.
    1. Li J., Arévalo M.T., Diaz-Arévalo D., Chen Y., Choi J.-G., Zeng M. Generation of a safe and effective live viral vaccine by virus self-attenuation using species-specific artificial microRNA. J. Control. Release. 2015;207:70–76.
    1. Zhou Z., Li X., Liu J., Dong L., Chen Q., Liu J., Kong H., Zhang Q., Qi X., Hou D. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25(1):39–49.
    1. Rosas-Taraco A.G., Higgins D.M., Sánchez-Campillo J., Lee E.J., Orme I.M., González-Juarrero M. Intrapulmonary delivery of XCL1-targeting small interfering RNA in mice chronically infected with Mycobacterium tuberculosis. Am. J. Respir. Cell Mol. Biol. 2009;41(2):136–145.
    1. Rosas-Taraco A.G., Higgins D.M., Sánchez-Campillo J., Lee E.J., Orme I.M., González-Juarrero M. Local pulmonary immunotherapy with siRNA targeting TGFβ1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis. 2011;91(1):98–106.
    1. Rizzo P., Dalla Sega F.V., Fortini F., Marracino L., Rapezzi C., Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res. Cardiol. 2020;115(3)
    1. A. Baldassarre, A. Paolini, S.P. Bruno, C. Felli, A.E. Tozzi, A. Masotti, Non-Coding RNAs and Innovative Therapeutic Strategies to Target the 5’UTR of SARS-CoV-2 (2020).
    1. , Oxygen-Ozone as Adjuvant Treatment in Early Control of COVID-19 Progression and Modulation of the Gut Microbial Flora (PROBIOZOVID), 2020. .
    1. Murdaca G., Tonacci A., Negrini S., Greco M., Borro M., Puppo F., Gangemi S. Effects of antagomiRs on different lung diseases in human, cellular, and animal models. Int. J. Mol. Sci. 2019;20(16):3938.
    1. S. Gangemi, A. Tonacci, AntagomiRs: A novel therapeutic strategy for challenging COVID-19 cytokine storm, Cytokine & growth factor reviews (2020).
    1. Nakamura S., Horie M., Daidoji T., Honda T., Yasugi M., Kuno A., Komori T., Okuzaki D., Narimatsu H., Nakaya T., Tomonaga K. Influenza A virus-induced expression of a GalNAc transferase, GALNT3, via MicroRNAs is required for enhanced viral replication. J. Virol. 2016;90(4):1788–1801.
    1. Ma Y.J., Yang J., Fan X.L., Zhao H.B., Hu W., Li Z.P., Yu G.C., Ding X.R., Wang J.Z., Bo X.C., Zheng X.F., Zhou Z., Wang S.Q. Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J. Cell Mol. Med. 2012;16(10):2539–2546.
    1. Deng J., Ptashkin R.N., Wang Q., Liu G., Zhang G., Lee I., Lee Y.S., Bao X. Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. Mol. Ther. Nucleic Acids. 2014;3(5) e163–e163.
    1. Baños-Lara M.D.R., Zabaleta J., Garai J., Baddoo M., Guerrero-Plata A. Comparative analysis of miRNA profile in human dendritic cells infected with respiratory syncytial virus and human metapneumovirus. BMC Res. Notes. 2018;11(1):432.
    1. Wu W., Choi E.-J., Lee I., Lee Y.S., Bao X. Non-coding RNAs and their role in Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (hMPV) infections. Viruses. 2020;12(3):345.
    1. Othumpangat S., Walton C., Piedimonte G. MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. PLoS ONE. 2012;7(1) e30030–e30030.
    1. Lánczky A., Nagy Á., Bottai G., Munkácsy G., Szabó A., Santarpia L., Győrffy B. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res. Treat. 2016;160(3):439–446.
    1. Sun Y.-M., Lin K.-Y., Chen Y.-Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol. 2013;6(1):6.
    1. Kriegel A.J., Liu Y., Fang Y., Ding X., Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genom. 2012;44(4):237–244.
    1. Wang H.F., Wang W.H., Zhuang H.W., Xu M. MiR-429 regulates the proliferation and apoptosis of nephroblastoma cells through targeting c-myc. Eur. Rev. Med. Pharmacol. Sci. 2018;22(16):5172–5179.
    1. Fernández-Hernando C., Suárez Y., Rayner K.J., Moore K.J. MicroRNAs in lipid metabolism. Curr. Opin. Lipidol. 2011;22(2):86–92.
    1. Lin Q., Gao Z., Alarcon R.M., Ye J., Yun Z. A role of miR-27 in the regulation of adipogenesis. The FEBS J. 2009;276(8):2348–2358.
    1. Zhou R., Gong A.-Y., Eischeid A.N., Chen X.-M. miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog. 2012;8(5)
    1. Forster S.C., Tate M.D., Hertzog P.J. MicroRNA as type I interferon-regulated transcripts and modulators of the innate immune response. Front. Immunol. 2015;6:334.
    1. O'Day E., Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2) 201–201.

Source: PubMed

3
Iratkozz fel