Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections

Tareq Abu-Izneid, Noora AlHajri, Abdallah Mohammad Ibrahim, Md Noushad Javed, Khairi Mustafa Salem, Faheem Hyder Pottoo, Mohammad Amjad Kamal, Tareq Abu-Izneid, Noora AlHajri, Abdallah Mohammad Ibrahim, Md Noushad Javed, Khairi Mustafa Salem, Faheem Hyder Pottoo, Mohammad Amjad Kamal

Abstract

Background: Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection.

Aim of review: We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections.

Key scientific concepts of review: miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/β) signalling cascade or upregulation of the IFN-α/β production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.

Keywords: Biomarkers; COVID-19; Immunotherapy; SARS-CoV-2; Viral infections; miRNAs.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Genomic structure of SARS-CoV-2 [Adapted after minor modification from open access; [136]].
Fig. 2
Fig. 2
Mechanism of action of miRNAs during viral infection [Adapted after minor modification from open access; [49]].

References

    1. Lai C.-C., Shih T.-P., Ko W.-C., Tang H.-J., Hsueh P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55 doi: 10.1016/j.ijantimicag.2020.105924.
    1. Hussain S., Pan J., Chen Y., Yang Y., Xu J., Peng Y. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol. 2005;79:5288–5295. doi: 10.1128/JVI.79.9.5288-5295.2005.
    1. Kandeel M., Ibrahim A., Fayez M., Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol. 2020 doi: 10.1002/jmv.25754.
    1. Sawicki S.G., Sawicki D.L., Siddell S.G. A Contemporary View of Coronavirus Transcription. J Virol. 2007;81:20–29. doi: 10.1128/JVI.01358-06.
    1. Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7:439–450. doi: 10.1038/nrmicro2147.
    1. Al Hajjar S., Memish Z.A., McIntosh K. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): a perpetual challenge. Ann Saudi Med. 2013;33:427–436. doi: 10.5144/0256-4947.2013.427.
    1. Masters P.S. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292. doi: 10.1016/S0065-3527(06)66005-3.
    1. Ziebuhr J., Snijder E.J., Gorbalenya A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol. 2000;81:853–879. doi: 10.1099/0022-1317-81-4-853.
    1. Beniac D.R., Andonov A., Grudeski E., Booth T.F. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006;13:751–752. doi: 10.1038/nsmb1123.
    1. Nal B., Chan C., Kien F., Siu L., Tse J., Chu K. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86:1423–1434. doi: 10.1099/vir.0.80671-0.
    1. DeDiego M.L., Alvarez E., Almazán F., Rejas M.T., Lamirande E., Roberts A. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81:1701–1713. doi: 10.1128/JVI.01467-06.
    1. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses. 2015;1282:1–23. doi: 10.1007/978-1-4939-2438-7_1.
    1. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215 doi: 10.1016/j.clim.2020.108427.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–192. doi: 10.1007/s11684-020-0754-0.
    1. Belouzard S., Chu V.C., Whittaker G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA. 2009;106:5871–5876. doi: 10.1073/pnas.0809524106.
    1. Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–1033. doi: 10.3390/v4061011.
    1. Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79:14614–14621. doi: 10.1128/JVI.79.23.14614-14621.2005.
    1. Yoshikawa T., Hill T., Li K., Peters C.J., Tseng C.-T.K. Severe Acute Respiratory Syndrome (SARS) Coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol. 2009;83:3039–3048. doi: 10.1128/JVI.01792-08.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020 doi: 10.1016/j.jpha.2020.03.001.
    1. Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M. Histopathologic changes and SARS–CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020 doi: 10.7326/M20-0533.
    1. Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1286.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013.
    1. Fox S.E., Akmatbekov A., Harbert J.L., Li G., Quincy Brown J., Vander Heide R.S. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans, Lancet. Respir Med. 2020;8:681–686. doi: 10.1016/S2213-2600(20)30243-5.
    1. Cheung K.S., Hung I.F.N., Chan P.P.Y., Lung K.C., Tso E., Liu R. Gastrointestinal manifestations of SARS-CoV-2 Infection And Virus Load In Fecal Samples From a Hong Kong Cohort: systematic review and meta-analysis. Gastroenterology. 2020;159:81–95. doi: 10.1053/j.gastro.2020.03.065.
    1. Pan L., Mu M., Yang P., Sun Y., Wang R., Yan J. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115:766–773. doi: 10.14309/ajg.0000000000000620.
    1. Murchison E.P., Hannon G.J. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 2004;16:223–229. doi: 10.1016/j.ceb.2004.04.003.
    1. Reddy K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38. doi: 10.1186/s12935-015-0185-1.
    1. Pottoo F.H., Javed Md.N., Rahman J.U., Abu-Izneid T., Khan F.A. Targeted delivery of miRNA based therapeuticals in the clinical management of glioblastoma multiforme. Semin Cancer Biol. 2020 doi: 10.1016/j.semcancer.2020.04.001.
    1. Pottoo F.H., Barkat Md.A., Harshita, Ansari M.A., Javed Md.N., Sajid Jamal Q.M., Kamal M.A. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol. 2019 doi: 10.1016/j.semcancer.2019.09.017.
    1. Grassmann R., Jeang K. The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta (BBA) - Gene Regulatory Mech. 2008;1779:706–711. doi: 10.1016/j.bbagrm.2008.05.005.
    1. Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., Persson R., Lindow M., Munk M.E. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201. doi: 10.1126/science.1178178.
    1. Rakhmetullina A, Ivashchenko A, Akimniyazova A, Aisina D, PyrkovaA .The miRNA Complexes Against Coronaviruses COVID-19, SARS-CoV, And MERS-CoV; 2020. 10.21203/-20476/v1.
    1. Liu Z, Wang J, Xu Y, Guo M, Mi K, Xu R, et al. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2, ArXiv:2004.04874 [q-Bio]; 2020. [accessed September 8, 2020].
    1. Gottwein E., Cullen B.R. Viral and cellular MicroRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe. 2008;3:375–387. doi: 10.1016/j.chom.2008.05.002.
    1. Trobaugh D.W., Klimstra W.B. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med. 2017;23:80–93. doi: 10.1016/j.molmed.2016.11.003.
    1. Wang Z., Zhao Y., Zhang Y. Viral lncRNA: a regulatory molecule for controlling virus life cycle. Non-Coding RNA Res. 2017;2:38–44. doi: 10.1016/j.ncrna.2017.03.002.
    1. Elnabi S.E.H. New strategies for treatment of COVID-19 and evolution of SARS-CoV-2 according to biodiversity and evolution theory. Egypt J Basic Appl Sci. 2020;7:226–232. doi: 10.1080/2314808X.2020.1789815.
    1. Wong R.R., Abd-Aziz N., Affendi S., Poh C.L. Role of microRNAs in antiviral responses to dengue infection. J Biomed Sci. 2020;27:4. doi: 10.1186/s12929-019-0614-x.
    1. Pijlman G.P., Funk A., Kondratieva N., Leung J., Torres S., van der Aa L. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4:579–591. doi: 10.1016/j.chom.2008.10.007.
    1. Fulzele Sadanand S.B., Fulzele Sadanand S.B. COVID-19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile. Aging Dis. 2020;11:509–522.
    1. Jopling C.L., Yi M., Lancaster A.M., Lemon S.M., Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309:1577–1581. doi: 10.1126/science.1113329.
    1. Duan X., Wang L., Sun G., Yan W., Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci. 2020;99:1838–1846. doi: 10.1016/j.psj.2019.11.053.
    1. Maranon D.G., Anderson J.R., Maranon A.G., Wilusz J. The interface between coronaviruses and host cell RNA biology: novel potential insights for future therapeutic intervention. WIREs RNA. 2020;11 doi: 10.1002/wrna.1614.
    1. Hanna J., Hossain G.S., Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10 doi: 10.3389/fgene.2019.00478.
    1. Leon-Icaza S.A., Zeng M., Rosas-Taraco A.G. microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1:1. doi: 10.1186/s41544-018-0004-7.
    1. Girardi E., López P., Pfeffer S. On the importance of host MicroRNAs during viral infection. Front Genet. 2018;9 doi: 10.3389/fgene.2018.00439.
    1. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384. doi: 10.1038/ni.1863.
    1. Jang J.-H., Shin H.W., Lee J.M., Lee H.-W., Kim E.-C., Park S.H. An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediators Inflamm. 2015;2015 doi: 10.1155/2015/794143.
    1. Wang S., Qu X., Zhao R.C. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5:19. doi: 10.1186/1756-8722-5-19.
    1. Zhang Y., Li Y. MicroRNAs in the regulation of immune response against infections. J Zhejiang Univ Sci B. 2013;14:1–7. doi: 10.1631/jzus.B1200292.
    1. Contreras J., Rao D.S. MicroRNAs in inflammation and immune responses. Leukemia. 2012;26:404–413. doi: 10.1038/leu.2011.356.
    1. Zhang Z., Zhang C., Li F., Zhang B., Zhang Y. Regulation of memory CD8+ T cell differentiation by MicroRNAs. Cell Physiol Biochem. 2018;47:2187–2198. doi: 10.1159/000491532.
    1. Sung S.-Y., Liao C.-H., Wu H.-P., Hsiao W.-C., Wu I.-H., Jinpu Yu. Loss of Let-7 MicroRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0071637.
    1. Lian C., Lou H., Zhang J., Tian H., Ou Q., Xu J.-Y. MicroRNA-24 protects retina from degeneration in rats by down-regulating chitinase-3-like protein 1. Exp Eye Res. 2019;188 doi: 10.1016/j.exer.2019.107791.
    1. Ma C., Li Y., Li M., Deng G., Wu X., Zeng J. microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol. 2014;62:150–158. doi: 10.1016/j.molimm.2014.06.014.
    1. Witkowski M., Weithauser A., Tabaraie T., Steffens D., Kränkel N., Witkowski M. Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler Thromb Vasc Biol. 2016;36:1263–1271. doi: 10.1161/ATVBAHA.115.306094.
    1. Strum J.C., Johnson J.H., Ward J., Xie H., Feild J., Hester A. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23:1876–1884. doi: 10.1210/me.2009-0117.
    1. Lorente-Cebrián S., Mejhert N., Kulyté A., Laurencikiene J., Åström G., Hedén P. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0086800.
    1. Xie Y.-F., Shu R., Jiang S.-Y., Liu D.-L., Ni J., Zhang X.-L. MicroRNA-146 inhibits pro-inflammatory cytokine secretion through IL-1 receptor-associated kinase 1 in human gingival fibroblasts. J Inflamm. 2013;10:20. doi: 10.1186/1476-9255-10-20.
    1. Taganov K.D., Boldin M.P., Chang K.-J., Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–12486. doi: 10.1073/pnas.0605298103.
    1. Taganov K.D., Boldin M.P., Chang K.-J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–12486. doi: 10.1073/pnas.0605298103.
    1. Sun X., Icli B., Wara A.K., Belkin N., He S., Kobzik L. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973–1990. doi: 10.1172/JCI61495.
    1. Rossato M., Curtale G., Tamassia N., Castellucci M., Mori L., Gasperini S. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA. 2012;109:E3101–E3110. doi: 10.1073/pnas.1209100109.
    1. Meerson A., Traurig M., Ossowski V., Fleming J.M., Mullins M., Baier L.J. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia. 2013;56:1971–1979. doi: 10.1007/s00125-013-2950-9.
    1. Ojcius D.M., Jafari A., Yeruva L., Schindler C.W., Abdul-Sater A.A. Dicer regulates activation of the NLRP3 inflammasome. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0215689.
    1. Chaudhary V., Jangra S., Yadav N.R. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnol. 2018;16:40. doi: 10.1186/s12951-018-0368-8.
    1. Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–114. doi: 10.1038/nrg2290.
    1. O’Connell R.M., Rao D.S., Chaudhuri A.A., Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10:111–122. doi: 10.1038/nri2708.
    1. O’Connell R.M., Baltimore D. Chapter six - MicroRNAs and hematopoietic cell development. In: Hornstein E., editor. Current topics in developmental biology. Academic Press; 2012. pp. 145–174.
    1. Trotta R., Chen L., Ciarlariello D., Josyula S., Mao C., Costinean S. miR-155 regulates IFN-γ production in natural killer cells. Blood. 2012;119:3478–3485. doi: 10.1182/blood-2011-12-398099.
    1. Beaulieu A.M., Bezman N.A., Lee J.E., Matloubian M., Sun J.C., Lanier L.L. MicroRNA function in NK cell biology. Immunol Rev. 2013;253:40–52. doi: 10.1111/imr.12045.
    1. Fehniger T.A., Wylie T., Germino E., Leong J.W., Magrini V.J., Koul S. Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res. 2010;20:1590–1604. doi: 10.1101/gr.107995.110.
    1. Tili E., Croce C.M., Michaille J.-J. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28:264–284. doi: 10.1080/08830180903093796.
    1. Dickey L.L., Hanley T.M., Huffaker T.B., Ramstead A.G., O’Connell R.M., Lane T.E. MicroRNA 155 and viral-induced neuroinflammation. J Neuroimmunol. 2017;308:17–24. doi: 10.1016/j.jneuroim.2017.01.016.
    1. Dahlke C., Maul K., Christalla T., Walz N., Schult P., Stocking C. A microRNA encoded by Kaposi sarcoma-associated herpesvirus promotes B-cell expansion in vivo. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0049435.
    1. Eis P.S., Tam W., Sun L., Chadburn A., Li Z., Gomez M.F. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102:3627–3632. doi: 10.1073/pnas.0500613102.
    1. O’Connell R.M., Rao D.S., Chaudhuri A.A., Boldin M.P., Taganov K.D., Nicoll J. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205:585–594. doi: 10.1084/jem.20072108.
    1. Rodriguez A., Vigorito E., Clare S., Warren M.V., Couttet P., Soond D.R. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–611. doi: 10.1126/science.1139253.
    1. Thai T.-H., Calado D.P., Casola S., Ansel K.M., Xiao C., Xue Y. Regulation of the germinal center response by microRNA-155. Science. 2007;316:604–608. doi: 10.1126/science.1141229.
    1. Wang P., Hou J., Lin L., Wang C., Liu X., Li D. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185:6226–6233. doi: 10.4049/jimmunol.1000491.
    1. Nakagawa R., Leyland R., Meyer-Hermann M., Lu D., Turner M., Arbore G. MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis. J Clin Invest. 2016;126:377–388. doi: 10.1172/JCI82914.
    1. Zhu N., Zhang D., Chen S., Liu X., Lin L., Huang X. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215:286–293. doi: 10.1016/j.atherosclerosis.2010.12.024.
    1. Vigorito E., Perks K.L., Abreu-Goodger C., Bunting S., Xiang Z., Kohlhaas S. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847–859. doi: 10.1016/j.immuni.2007.10.009.
    1. Hu R., Kagele D.A., Huffaker T.B., Runtsch M.C., Alexander M., Liu J. miR-155 promotes T follicular helper cell accumulation during chronic, low-grade inflammation. Immunity. 2014;41:605–619. doi: 10.1016/j.immuni.2014.09.015.
    1. Kemp V., Laconi A., Cocciolo G., Berends A.J., Breit T.M., Verheije M.H. miRNA repertoire and host immune factor regulation upon avian coronavirus infection in eggs. Arch Virol. 2020;165:835–843. doi: 10.1007/s00705-020-04527-4.
    1. Zeng F.-R., Tang L.-J., He Y., Garcia R.C. An update on the role of miRNA-155 in pathogenic microbial infections. Microbes Infect. 2015;17:613–621. doi: 10.1016/j.micinf.2015.05.007.
    1. Dudda J.C., Salaun B., Ji Y., Palmer D.C., Monnot G.C., Merck E. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity. 2013;38:742–753. doi: 10.1016/j.immuni.2012.12.006.
    1. Gracias D.T., Stelekati E., Hope J.L., Boesteanu A.C., Doering T.A., Norton J. The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol. 2013;14:593–602. doi: 10.1038/ni.2576.
    1. Ji Y., Wrzesinski C., Yu Z., Hu J., Gautam S., Hawk N.V. miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic γc cytokines. Proc Natl Acad Sci USA. 2015;112:476–481. doi: 10.1073/pnas.1422916112.
    1. Dickey L.L., Worne C.L., Glover J.L., Lane T.E., O’Connell R.M. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation. 2016;13:240. doi: 10.1186/s12974-016-0699-z.
    1. Kroesen B.-J., Teteloshvili N., Smigielska-Czepiel K., Brouwer E., Boots A.M.H., van den Berg A. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology. 2015;144:1–10. doi: 10.1111/imm.12367.
    1. Głobińska A., Pawełczyk M., Kowalski M.L. MicroRNAs and the immune response to respiratory virus infections. Expert Rev Clin Immunol. 2014;10:963–971. doi: 10.1586/1744666X.2014.913482.
    1. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107:823–826. doi: 10.1016/s0092-8674(01)00616-x.
    1. Konno H., Yamamoto T., Yamazaki K., Gohda J., Akiyama T., Semba K. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0005674.
    1. Li Z., Luo Q., Xu H., Zheng M., Abdalla B.A., Feng M. MiR-34b-5p suppresses melanoma differentiation-associated gene 5 (MDA5) signaling pathway to promote avian leukosis virus subgroup J (ALV-J)-infected cells proliferaction and ALV-J replication. Front Cell Infect Microbiol. 2017;7:17. doi: 10.3389/fcimb.2017.00017.
    1. Mallick B., Ghosh Z., Chakrabarti J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0007837.
    1. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1 doi: 10.1101/cshperspect.a001651.
    1. Haasnoot J., Berkhout B. RNAi and cellular miRNAs in infections by mammalian viruses. In: van Rij R.P., editor. Antiviral RNAi: concepts, methods, and applications. Humana Press; Totowa, NJ: 2011. pp. 23–41.
    1. Khan Md.A.-A.-K., Sany Md.R.U., Islam Md.S., Islam A.B.M.Md.K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front Genet. 2020;11 doi: 10.3389/fgene.2020.00765.
    1. Lu D., Chatterjee S., Xiao K., Riedel I., Wang Y., Foo R. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol. 2020;148:46–49. doi: 10.1016/j.yjmcc.2020.08.017.
    1. Hirasawa K., Kim A., Han H.-S., Han J., Jun H.-S., Yoon J.-W. Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus. J Virol. 2003;77:5649–5656. doi: 10.1128/jvi.77.10.5649-5656.2003.
    1. Elbahesh H., Cline T., Baranovich T., Govorkova E.A., Schultz-Cherry S., Russell C.J. Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J Virol. 2014;88:6714–6728. doi: 10.1128/JVI.00530-14.
    1. Diehl N., Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses. 2013;5:3192–3212. doi: 10.3390/v5123192.
    1. Bruscella P., Bottini S., Baudesson C., Pawlotsky J.-M., Feray C., Trabucchi M. Viruses and miRNAs: more friends than foes. Front Microbiol. 2017;8:824. doi: 10.3389/fmicb.2017.00824.
    1. Liu C., Zhou Q., Li Y., Garner L.V., Watkins S.P., Carter L.J. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6:315–331. doi: 10.1021/acscentsci.0c00272.
    1. Zeng J., Gupta V.K., Jiang Y., Yang B., Gong L., Zhu H. Cross-kingdom small RNAs among animals, plants and microbes. Cells. 2019;8 doi: 10.3390/cells8040371.
    1. Yan B., Wang H., Tan Y., Fu W. microRNAs in cardiovascular disease: small molecules but big roles. Curr Top Med Chem. 2019;19:1918–1947. doi: 10.2174/1568026619666190808160241.
    1. Broderick J.A., Zamore P.D. MicroRNA therapeutics. Gene Ther. 2011;18:1104–1110. doi: 10.1038/gt.2011.50.
    1. Cheng C.J., Bahal R., Babar I.A., Pincus Z., Barrera F., Liu C. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107–110. doi: 10.1038/nature13905.
    1. Li Z., Rana T.M. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13:622–638. doi: 10.1038/nrd4359.
    1. Peer D. A daunting task: manipulating leukocyte function with RNAi. Immunol Rev. 2013;253:185–197. doi: 10.1111/imr.12044.
    1. Kanasty, R., Dorkin, J., Vegas, A. et al. Delivery materials for siRNA therapeutics. Nature Mater 12, 967–977 (2013). 10.1038/nmat3765.
    1. Mishra S., Sharma S., Javed M.N., Pottoo F.H., Barkat M.A., Harshita Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm Nanotechnol. 2019;7:206–219. doi: 10.2174/2211738507666190425121509.
    1. Sharma S., Javed M.N., Pottoo F.H., Rabbani S.A., Barkat M.A., Harshita Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol. 2019;7:220–233. doi: 10.2174/2211738507666190429103814.
    1. Ansari M.A., Badrealam K.F., Alam A., Tufail S., Khalique G., Equbal M.J. Recent Nano-based therapeutic intervention of Bioactive Sesquiterpenes: Prospects in cancer therapeutics. Curr Pharm Des. 2020 doi: 10.2174/1381612826666200116151522.
    1. Obad S., dos Santos C.O., Petri A., Heidenblad M., Broom O., Ruse C. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43:371–378. doi: 10.1038/ng.786.
    1. Garchow B.G., Bartulos Encinas O., Leung Y.T., Tsao P.Y., Eisenberg R.A., Caricchio R. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 2011;3:605–615. doi: 10.1002/emmm.201100171.
    1. Guinea-Viniegra J., Jiménez M., Schonthaler H.B., Navarro R., Delgado Y., Concha-Garzón M.J. Targeting miR-21 to treat psoriasis. Sci Transl Med. 2014;6:225re1. doi: 10.1126/scitranslmed.3008089.
    1. Wang H., Flach H., Onizawa M., Wei L., McManus M.T., Weiss A. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol. 2014;15:393–401. doi: 10.1038/ni.2846.
    1. Konermann S., Brigham M.D., Trevino A.E., Joung J., Abudayyeh O.O., Barcena C. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–588. doi: 10.1038/nature14136.
    1. Roos M., Rebhan M.A.E., Lucic M., Pavlicek D., Pradere U., Towbin H. Short loop-targeting oligoribonucleotides antagonize Lin28 and enable pre-let-7 processing and suppression of cell growth in let-7-deficient cancer cells. Nucleic Acids Res. 2015;43 doi: 10.1093/nar/gku1090.
    1. Chakraborty C., Sharma A.R., Sharma G., Lee S.-S. Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res. 2021;28:127–138. doi: 10.1016/j.jare.2020.08.012.
    1. Li Y., Kowdley K.V. MicroRNAs in common human diseases. Genomics, Proteomics Bioinform. 2012;10:246–253. doi: 10.1016/j.gpb.2012.07.005.
    1. Tahamtan A., Inchley C.S., Marzban M., Tavakoli-Yaraki M., Teymoori-Rad M., Nakstad B. The role of microRNAs in respiratory viral infection: friend or foe? Rev Med Virol. 2016;26:389–407. doi: 10.1002/rmv.1894.
    1. Tribolet L., Kerr E., Cowled C., Bean A.G.D., Stewart C.R., Dearnley M. MicroRNA biomarkers for infectious diseases: from basic research to biosensing. Front Microbiol. 2020;11 doi: 10.3389/fmicb.2020.01197.
    1. Fu Y., Chen J., Huang Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA. 2019;1:24. doi: 10.1186/s41544-019-0024-y.
    1. Lawrie C.H., Gal S., Dunlop H.M., Pushkaran B., Liggins A.P., Pulford K. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–675. doi: 10.1111/j.1365-2141.2008.07077.x.
    1. Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. doi: 10.1038/cr.2008.282.
    1. Guterres A., de Azeredo Lima C.H., Miranda R.L., Gadelha M.R. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect Genetics Evol. 2020;85 doi: 10.1016/j.meegid.2020.104417.
    1. Gashaw I., Ellinghaus P., Sommer A., Asadullah K. What makes a good drug target? Drug Discov Today. 2011;16:1037–1043. doi: 10.1016/j.drudis.2011.09.007.
    1. Simpson L.J., Patel S., Bhakta N.R., Choy D.F., Brightbill H.D., Ren X. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol. 2014;15:1162–1170. doi: 10.1038/ni.3026.
    1. Olive V., Minella A.C., He L. Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal. 2015;8:re2. doi: 10.1126/scisignal.2005813.
    1. Alanagreh L., Alzoughool F., Atoum M. The human coronavirus disease COVID-19: its origin characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020;9:331. doi: 10.3390/pathogens9050331.

Source: PubMed

3
Iratkozz fel