Sleep Is Compromised in -12° Head Down Tilt Position

Alessa L Boschert, David Elmenhorst, Peter Gauger, Zhili Li, Maria T Garcia-Gutierrez, Darius Gerlach, Bernd Johannes, Jochen Zange, Andreas Bauer, Jörn Rittweger, Alessa L Boschert, David Elmenhorst, Peter Gauger, Zhili Li, Maria T Garcia-Gutierrez, Darius Gerlach, Bernd Johannes, Jochen Zange, Andreas Bauer, Jörn Rittweger

Abstract

Recent studies are elucidating the interrelation between sleep, cranial perfusion, and cerebrospinal fluid (CSF) circulation. Head down tilt (HDT) as a simulation of microgravity reduces cranial perfusion. Therefore, our aim was to assess whether HDT is affecting sleep (clinicaltrials.gov; identifier NCT02976168). 11 male subjects were recruited for a cross-over designed study. Each subject participated in two campaigns each comprising 3 days and 2 nights. Intervention started on the second campaign day and consisted of maintenance of horizontal position or -12° HDT for 21 h. Ultrasound measurements were performed before, at the beginning and the end of intervention. Polysomnographic measurements were assessed in the second night which was either spent in horizontal posture or at -12° HDT. Endpoints were sleep efficiency, sleep onset latency, number of sleep state changes and arousals, percentages of N3, REM, light sleep stages and subjective sleep parameters. N3 and REM sleep reduced by 25.6 and 19.1 min, respectively (P = 0.002, g = -0.898; P = 0.035, g = -0.634) during -12° HDT. Light sleep (N1/2) increased by 33.0 min at -12° HDT (P = 0.002, g = 1.078). On a scale from 1 to 9 subjective sleep quality deteriorated by 1.3 points during -12° HDT (P = 0.047, g = -0.968). Ultrasonic measurement of the venous system showed a significant increase of the minimum (P = 0.009, P < 0.001) and maximum (P = 0.004, P = 0.002) cross-sectional area of the internal jugular vein at -12° HDT. The minimum cross-sectional area of the external jugular vein differed significantly between conditions over time (P = 0.001) whereas frontal skin tissue thickness was not significantly different between conditions (P = 0.077, P = 0.811). Data suggests venous congestion at -12° HDT. Since subjects felt comfortable with lying in -12° HDT under our experimental conditions, this posture only moderately deteriorates sleep. Obviously, the human body can almost compensate the several fold effects of gravity in HDT posture like an affected CSF circulation, airway obstruction, unusual patterns of propioception and effects on the cardiovascular system.

Keywords: bed rest; head down tilt; polysomnography; simulated microgravity; sleep.

Figures

FIGURE 1
FIGURE 1
Campaign overview. Each subject participated in two campaigns, once staying in horizontal posture and once being tilted to −12° HDT. Between these two campaigns there was about a week’s time. Measurement blocks were carried out on both interventional days comprising five measurements. BDC, Baseline data collection; MB, Measurement block; NIRS, Near-infrared spectroscopy; TCD, Transcranial Doppler ultrasound of the mid-cerebral artery; CTB, cognitive test battery; MRI, (functional) magnetic resonance imaging; US, ultrasound of the jugular vein and facial thickness.
FIGURE 2
FIGURE 2
Sleep stages. Percentage of slow wave sleep (20.2% ± 5.2% vs. 25. 4% ± 6.4%) and REM sleep (19.9% ± 5.7% vs. 23.7% ± 6.3%) were reduced during the −12° HDT night. Percentage of light sleep increased (59.9% ± 7.2% vs. 50.9% ± 9.4%) when compared to horizontal position. HDT, Head down tilt.

References

    1. Akerstedt T., Hume K., Minors D., Waterhouse J. (1994). The meaning of good sleep: a longitudinal study of polysomnography and subjective sleep quality. J. Sleep Res. 3 152–158. 10.1111/j.1365-2869.1994.tb00122.x
    1. Barger L. K., Flynn-Evans E. E., Kubey A., Walsh L., Ronda J. M., Wang W., et al. (2014). Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 13 904–912. 10.1016/S1474-4422(14)70122-X
    1. Begle R. L., Badr S., Skatrud J. B., Dempsey J. A. (1990). Effect of lung inflation on pulmonary resistance during NREM sleep. Am. Rev. Respir. Dis. 141 854–860. 10.1164/ajrccm/141.4_Pt_1.854
    1. Biousse V., Bruce B. B., Newman N. J. (2012). Update on the pathophysiology and management of idiopathic intracranial hypertension. J. Neurol. Neurosurg. Psychiatry 83 488–494. 10.1136/jnnp-2011-302029
    1. Bradley T. D., Floras J. S. (2003). Sleep apnea and heart failure. part i: obstructive sleep apnea. Circulation 107 1671–1678. 10.1161/01.CIR.0000061757.12581.15
    1. Caplan L. R. (2006). Cardiac encephalopathy and congestive heart failure: a hypothesis about the relationship. Neurology 66 99–101. 10.1212/01.wnl.0000191327.62136.b1
    1. Carskadon M. A., Dement W. C. (2005). Normal human sleep: an overview. Princ. Pract. Sleep Med. 4 13–23. 10.1016/B0-72-160797-7/50009-4
    1. Delaidelli A., Moiraghi A. (2017). Respiration: a new mechanism for CSF circulation? J. Neurosci. 37 7076–7078. 10.1523/JNEUROSCI.1155-17.2017
    1. DeRoshia C. W., Greenleaf J. E. (1993). Performance and mood-state parameters during 30-day 6 degrees head-down bed rest with exercise training. Aviat. Space Environ. Med. 64 522–527.
    1. Dijk D.-J., Neri D. F., Wyatt J. K., Ronda J. M., Riel E., Ritz-De Cecco A., et al. (2001). Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am. J. Physiol Regul. Integr. Comp. Physiol. 281 R1647–R1664. 10.1152/ajpregu.2001.281.5.R1647
    1. Dinges D. F., Basner M., Dj M., Goel N., Braun M. (2013). “ISS missions: elevated workload and reduced sleep duration,” in Proceedings of the NASA Human Research Program Investigators’ Workshop, (Galveston, TX: ).
    1. Dreha-Kulaczewski S., Joseph A. A., Merboldt K. D., Ludwig H. C., Gartner J., Frahm J. (2015). Inspiration is the major regulator of human CSF flow. J. Neurosci. 35 2485–2491. 10.1523/JNEUROSCI.3246-14.2015
    1. Dreha-Kulaczewski S., Joseph A. A., Merboldt K. D., Ludwig H. C., Gartner J., Frahm J. (2017). Identification of the upward movement of human CSF In vivo and its relation to the brain venous system. J. Neurosci. 37 2395–2402. 10.1523/JNEUROSCI.2754-16.2017
    1. Flynn-Evans E. E., Barger L. K., Kubey A. A., Sullivan J. P., Czeisler C. A. (2016). Circadian misalignment affects sleep and medication use before and during spaceflight. NPJ Microgravity 2:15019. 10.1038/npjmgrav.2015.19
    1. Gengo F. (2006). Effects of ibuprofen on sleep quality as measured using polysomnography and subjective measures in healthy adults. Clin. Ther. 28 1820–1826. 10.1016/j.clinthera.2006.11.018
    1. Gkivogkli P. T., Frantzidis C., Karagianni M., Rosenzweig I., Papadeli C. K., Bamidis P. D. (2016). Sleep macro-architecture disturbances during a 60 days 60 head down tilt bed-rest and the effect of Sledge Jumping System (SJS) as a countermeasure to prevent those changes. Front. Hum. Neurosci. 12:106 10.3389/conf.fnhum.2016.220.00106
    1. Gundel A., Polyakov V. V., Zulley J. (1997). The alteration of human sleep and circadian rhythms during spaceflight. J. Sleep Res. 6 1–8. 10.1046/j.1365-2869.1997.00028.x
    1. Horner R. L., Mohiaddin R. H., Lowell D. G., Shea S. A., Burman E. D., Longmore D. B., et al. (1989). Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur. Respir. J. 2 613–622.
    1. Iber C., Ancoli-Israel S., Chesson A., Quan S. (2007). The AASM manual for the scoring of sleep and associated events : rules, terminology and technical specifications. Westchester, IL: American Academy of Sleep Medicine.
    1. Kakurin L. I., Lobachik V. I., Mikhailov V. M., Senkevich Y. A. (1976). Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ. Med. 47 1083–1086.
    1. Kaneita Y., Ohida T., Uchiyama M., Takemura S., Kawahara K., Yokoyama E., et al. (2006). The relationship between depression and sleep disturbances: a Japanese nationwide general population survey. J. Clin. Psychiatry 67 196–203. 10.4088/JCP.v67n0204
    1. Keklund G., Akerstedt T. (1997). Objective components of individual differences in subjective sleep quality. J. Sleep Res. 6 217–220. 10.1111/j.1365-2869.1997.00217.x
    1. Komada Y., Inoue Y., Mizuno K., Tanaka H., Mishima K., Sato H., et al. (2006). Effects of acute simulated microgravity on nocturnal sleep, daytime vigilance, and psychomotor performance: comparison of horizontal and 6 degrees head-down bed rest. Percept. Mot. Skills 103 307–317. 10.2466/PMS.103.6.307-317
    1. Kramer L. A., Hasan K. M., Sargsyan A. E., Marshall-Goebel K., Rittweger J., Donoviel D., et al. (2017). Quantitative MRI volumetry, diffusivity, cerebrovascular flow, and cranial hydrodynamics during head-down tilt and hypercapnia: the SPACECOT study. J. Appl. Physiol. 122 1155–1166. 10.1152/japplphysiol.00887.2016
    1. Lawley J. S., Petersen L. G., Howden E. J., Sarma S., Cornwell W. K., Zhang R., et al. (2017). Effect of gravity and microgravity on intracranial pressure. J. Physiol. 595 2115–2127. 10.1113/JP273557
    1. Le Bon O., Staner L., Hoffmann G., Dramaix M., San Sebastian I., Murphy J. R., et al. (2001). The first-night effect may last more than one night. J. Psychiatr. Res. 35 165–172. 10.1016/S0022-3956(01)00019-X
    1. Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., et al. (2015). The effect of body posture on brain glymphatic transport. J. Neurosci. 35 11034–11044. 10.1523/JNEUROSCI.1625-15.2015
    1. Liu Q., Zhou R., Chen S., Tan C. (2012). Effects of head-down bed rest on the executive functions and emotional response. PLoS One 7:e52160. 10.1371/journal.pone.0052160
    1. Mallis M. M., DeRoshia C. W. (2005). Circadian rhythms, sleep, and performance in space. Aviat Space Environ. Med. 76 B94–B107.
    1. Marshall-Goebel K., Ambarki K., Eklund A., Malm J., Mulder E., Gerlach D., et al. (2016). Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI. J. Appl. Physiol. 120 1466–1473. 10.1152/japplphysiol.00841.2015
    1. McCarley R. W., Hobson J. A. (1975). Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189 58–60. 10.1126/science.1135627
    1. McGeeney B. E., Friedman D. I. (2014). Pseudotumor cerebri pathophysiology. Headache 54 445–458. 10.1111/head.12291
    1. Meck J. V., Dreyer S. A., Warren L. E. (2009). Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ. Med. 80 A1–A8. 10.3357/ASEM.BR01.2009
    1. Mizuno K., Inoue Y., Tanaka H., Komada Y., Saito H., Mishima K., et al. (2005). Heart rate variability under acute simulated microgravity during daytime waking state and nocturnal sleep: comparison of horizontal and 6 degrees head-down bed rest. Neurosci. Lett. 383 115–120. 10.1016/j.neulet.2005.03.058
    1. Monk T. H., Buysse D. J., Billy B. D., Kennedy K. S., Willrich L. M. (1998). Sleep and circadian rhythms in four orbiting astronauts. J. Biol. Rhythms 13 188–201. 10.1177/074873098129000039
    1. Murphy P. J., Badia P., Myers B. L., Boecker M. R., Wright K. P., Jr. (1994). Nonsteroidal anti-inflammatory drugs affect normal sleep patterns in humans. Physiol. Behav. 55 1063–1066. 10.1016/0031-9384(94)90388-3
    1. Murphy P. J., Myers B. L., Badia P. (1996). Nonsteroidal anti-inflammatory drugs alter body temperature and suppress melatonin in humans. Physiol. Behav. 59 133–139. 10.1016/0031-9384(95)02036-5
    1. Pavy-Le Traon A., Heer M., Narici M. V., Rittweger J., Vernikos J. (2007). From space to Earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur. J. Appl. Physiol. 101 143–194. 10.1007/s00421-007-0474-z
    1. Rai B., Kaur J. (2011). Salivary stress markers and psychological stress in simulated microgravity: 21 days in 6 degrees head-down tilt. J. Oral. Sci. 53 103–107. 10.2334/josnusd.53.103
    1. Rosa R. R., Bonnet M. H., Kramer M. (1983). The relationship of sleep and anxiety in anxious subjects. Biol. Psychol. 16 119–126. 10.1016/0301-0511(83)90058-3
    1. Shinohara E., Kihara S., Yamashita S., Yamane M., Nishida M., Arai T., et al. (1997). Visceral fat accumulation as an important risk factor for obstructive sleep apnoea syndrome in obese subjects. J. Intern. Med. 241 11–18. 10.1046/j.1365-2796.1997.63889000.x
    1. Stanchina M. L., Malhotra A., Fogel R. B., Trinder J., Edwards J. K., Schory K., et al. (2003). The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep 26 851–856. 10.1093/sleep/26.7.851
    1. Styf J. R., Hutchinson K., Carlsson S. G., Hargens A. R. (2001). Depression, mood state, and back pain during microgravity simulated by bed rest. Psychosom Med. 63 862–864. 10.1097/00006842-200111000-00002
    1. Van Dongen H. P., Baynard M. D., Maislin G., Dinges D. F. (2004). Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep 27423–433.
    1. Whitmire A. M., Leveton L. B., Barger L., Brainard G., Dinges D. F., Klerman E., et al. (2009). “Risk of performance errors due to sleep loss, circadian desynchronization, fatigue, and work overload,” in Human Health and Performance Risks of Space Exploration Missions: Evidence Reviewed by the NASA Human Research Program. NASA SP-2009-3405, (Washington, DC: National Aeronautics and Space Administration; ).
    1. Winokur A., Gary K. A., Rodner S., Rae-Red C., Fernando A. T., Szuba M. P. (2001). Depression, sleep physiology, and antidepressant drugs. Depress Anxiety 14 19–28. 10.1002/da.1043
    1. Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342 373–377. 10.1126/science.1241224
    1. Yuan H., Schwab R. J., Kim C., He J., Shults J., Bradford R., et al. (2013). Relationship between body fat distribution and upper airway dynamic function during sleep in adolescents. Sleep 36 1199–1207. 10.5665/sleep.2886

Source: PubMed

3
Iratkozz fel