Effects of therapeutic plasma exchange on the endothelial glycocalyx in septic shock

Klaus Stahl, Uta Carola Hillebrand, Yulia Kiyan, Benjamin Seeliger, Julius J Schmidt, Heiko Schenk, Thorben Pape, Bernhard M W Schmidt, Tobias Welte, Marius M Hoeper, Agnes Sauer, Malgorzata Wygrecka, Christian Bode, Heiner Wedemeyer, Hermann Haller, Sascha David, Klaus Stahl, Uta Carola Hillebrand, Yulia Kiyan, Benjamin Seeliger, Julius J Schmidt, Heiko Schenk, Thorben Pape, Bernhard M W Schmidt, Tobias Welte, Marius M Hoeper, Agnes Sauer, Malgorzata Wygrecka, Christian Bode, Heiner Wedemeyer, Hermann Haller, Sascha David

Abstract

Background: Disruption of the endothelial glycocalyx (eGC) is observed in septic patients and its injury is associated with multiple-organ failure and inferior outcomes. Besides this biomarker function, increased blood concentrations of shedded eGC constituents might play a mechanistic role in septic organ failure. We hypothesized that therapeutic plasma exchange (TPE) using fresh frozen plasma might influence eGC-related pathology by removing injurious mediators of eGC breakdown while at the time replacing eGC protective factors.

Methods: We enrolled 20 norepinephrine-dependent (NE > 0.4 μg/kg/min) patients with early septic shock (onset < 12 h). Sublingual assessment of the eGC via sublingual sidestream darkfield (SDF) imaging was performed. Plasma eGC degradation products, such as heparan sulfate (HS) and the eGC-regulating enzymes, heparanase (Hpa)-1 and Hpa-2, were obtained before and after TPE. A 3D microfluidic flow assay was performed to examine the effect of TPE on eGC ex vivo. Results were compared to healthy controls.

Results: SDF demonstrated a decrease in eGC thickness in septic patients compared to healthy individuals (p = 0.001). Circulating HS levels were increased more than sixfold compared to controls and decreased significantly following TPE [controls: 16.9 (8-18.6) vs. septic patients before TPE: 105.8 (30.8-143.4) μg/ml, p < 0.001; vs. after TPE: 70.7 (36.9-109.5) μg/ml, p < 0.001]. The Hpa-2 /Hpa-1 ratio was reduced in septic patients before TPE but normalized after TPE [controls: 13.6 (6.2-21.2) vs. septic patients at inclusion: 2.9 (2.1-5.7), p = 0.001; vs. septic patients after TPE: 13.2 (11.2-31.8), p < 0.001]. Ex vivo stimulation of endothelial cells with serum from a septic patient induced eGC damage that could be attenuated with serum from the same patient following TPE.

Conclusions: Septic shock results in profound degradation of the eGC and an acquired deficiency of the protective regulator Hpa-2. TPE removed potentially injurious eGC degradation products and partially attenuated Hpa-2 deficiency. Trial registration clinicaltrials.gov NCT04231994, retrospectively registered 18 January 2020.

Keywords: DAMP; Extracorporeal treatment; Heparan sulfate; Heparanase; Plasmapheresis.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of study participants. NE means norepinephrine and TPE therapeutic plasma exchange
Fig. 2
Fig. 2
Injury to the endothelial glycocalyx (eGC) in vivo. Sublingual dark field imaging in patients allows quantification of the eGC thickness as indicated by the perfused boundary region (PBR). Box and whisker plots showing results for healthy controls (n = 10) as well as patients with septic shock before commencement of therapeutic plasma exchange (TPE) (n = 11)
Fig. 3
Fig. 3
Effect of therapeutic plasma exchange (TPE) on glycocalyx shedding products. Box and whisker plots showing blood concentrations of hyaluronic acid (HA) (A), chondroitin sulfate (CS) (B) and heparan sulfate (HS) (C) for healthy controls (n = 20) as well as patients with septic shock before (pre) (n = 20) and directly after (post) (n = 20) TPE
Fig. 4
Fig. 4
Effect of therapeutic plasma exchange (TPE) on key regulating enzymes of the endothelial glycocalyx (eGC). Box and whisker plots showing blood concentrations of circulating Heparanase-1 (Hpa-1) (A), Heparanase-2 (Hpa-2) (B) as well as the ratio of Hpa-2 to Hpa-1 (C) for healthy controls (n = 18) as well as patients with septic shock before (pre) (n = 20) and directly after (post) (n = 20) TPE
Fig. 5
Fig. 5
Ex vivo stimulation of 3D microvessels with septic serum before and after therapeutic plasma exchange (TPE). Exemplary 3D reconstruction of the heparan sulfate (HS) layer images of naive endothelial cells in a microfluidic chip (HS in red, DAPI nuclei staining in blue) after perfusion with serum and incubation overnight of a representative septic patient both before and after TPE compared to healthy control serum (pooled out of four control patients) (A) and quantification of the HS positive surface area as box and whisker plots (B)

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(21):2063.
    1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–851. doi: 10.1056/NEJMra1208623.
    1. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–784. doi: 10.1111/anae.12661.
    1. Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217–1223. doi: 10.1038/nm.2843.
    1. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019;23(1):16. doi: 10.1186/s13054-018-2292-6.
    1. Lygizos MI, Yang Y, Altmann CJ, Okamura K, Hernando AA, Perez MJ, et al. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol Rep. 2013;1(6):e00153. doi: 10.1002/phy2.153.
    1. Martin L, Koczera P, Zechendorf E, Schuerholz T. The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis. Biomed Res Int. 2016;2016:3758278. doi: 10.1155/2016/3758278.
    1. Levy-Adam F, Feld S, Cohen-Kaplan V, Shteingauz A, Gross M, Arvatz G, et al. Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem. 2010;285(36):28010–28019. doi: 10.1074/jbc.M110.116384.
    1. Vlodavsky I, Gross-Cohen M, Weissmann M, Ilan N, Sanderson RD. Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem Sci. 2018;43(1):18–31. doi: 10.1016/j.tibs.2017.10.007.
    1. Kiyan Y, Tkachuk S, Kurselis K, Shushakova N, Stahl K, Dawodu D, et al. Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling. Sci Rep. 2019;9(1):13591. doi: 10.1038/s41598-019-50068-5.
    1. Martin L, Schmitz S, De Santis R, Doemming S, Haase H, Hoeger J, et al. Peptide 19–25 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum. PLoS ONE. 2015;10(5):e0127584. doi: 10.1371/journal.pone.0127584.
    1. Hippensteel JA, Anderson BJ, Orfila JE, McMurtry SA, Dietz RM, Su G, et al. Circulating heparan sulfate fragments mediate septic cognitive dysfunction. J Clin Investig. 2019;129(4):1779–1784. doi: 10.1172/JCI124485.
    1. Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med. 2007;33(4):606–618. doi: 10.1007/s00134-006-0517-7.
    1. Knaup H, Stahl K, Schmidt BMW, Idowu TO, Busch M, Wiesner O, et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care. 2018;22(1):285. doi: 10.1186/s13054-018-2220-9.
    1. Stahl K, Schmidt JJ, Seeliger B, Schmidt BMW, Welte T, Haller H, et al. Effect of therapeutic plasma exchange on endothelial activation and coagulation-related parameters in septic shock. Crit Care. 2020;24(1):71. doi: 10.1186/s13054-020-2799-5.
    1. David S, Stahl K. To remove and replace-a role for plasma exchange in counterbalancing the host response in sepsis. Crit Care. 2019;23(1):14. doi: 10.1186/s13054-018-2289-1.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–710. doi: 10.1007/BF01709751.
    1. Schmidt EP, Li G, Li L, Fu L, Yang Y, Overdier KH, et al. The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J Biol Chem. 2014;289(12):8194–8202. doi: 10.1074/jbc.M113.539452.
    1. Rovas A, Seidel LM, Vink H, Pohlkotter T, Pavenstadt H, Ertmer C, et al. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care. 2019;23(1):260. doi: 10.1186/s13054-019-2542-2.
    1. Beurskens DM, Bol ME, Delhaas T, van de Poll MC, Reutelingsperger CP, Nicolaes GA, et al. Decreased endothelial glycocalyx thickness is an early predictor of mortality in sepsis. Anaesth Intensive Care. 2020;48(3):221–228. doi: 10.1177/0310057X20916471.
    1. Nelson A, Berkestedt I, Bodelsson M. Circulating glycosaminoglycan species in septic shock. Acta Anaesthesiol Scand. 2014;58(1):36–43. doi: 10.1111/aas.12223.
    1. Lamkanfi M. Emerging inflammasome effector mechanisms. Nat Rev Immunol. 2011;11(3):213–220. doi: 10.1038/nri2936.
    1. Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight. 2019;4(2):e124061. doi: 10.1172/jci.insight.124061.
    1. Goodall KJ, Poon IK, Phipps S, Hulett MD. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS ONE. 2014;9(10):e109596. doi: 10.1371/journal.pone.0109596.
    1. Lortat-Jacob H, Baltzer F, Grimaud JA. Heparin decreases the blood clearance of interferon-gamma and increases its activity by limiting the processing of its carboxyl-terminal sequence. J Biol Chem. 1996;271(27):16139–16143. doi: 10.1074/jbc.271.27.16139.
    1. Martin L, Peters C, Schmitz S, Moellmann J, Martincuks A, Heussen N, et al. Soluble heparan sulfate in serum of septic shock patients induces mitochondrial dysfunction in murine cardiomyocytes. Shock. 2015;44(6):569–577. doi: 10.1097/SHK.0000000000000462.
    1. Zhang X, Han X, Xia K, Xu Y, Yang Y, Oshima K, et al. Circulating heparin oligosaccharides rapidly target the hippocampus in sepsis, potentially impacting cognitive functions. Proc Natl Acad Sci USA. 2019;116(19):9208–9213. doi: 10.1073/pnas.1902227116.
    1. Matan M, King D, Peled E, Ackerman S, Bar-Lavi Y, Brenner B, et al. Heparanase level and procoagulant activity are reduced in severe sepsis. Eur J Haematol. 2018;100(2):182–188. doi: 10.1111/ejh.12997.
    1. Shu J, Santulli G. Heparanase in health and disease: the neglected housekeeper of the cell? Atherosclerosis. 2019;283:124–126. doi: 10.1016/j.atherosclerosis.2019.01.017.
    1. Stahl K, Gronski PA, Kiyan Y, Seeliger B, Bertram A, Pape T, et al. Injury to the endothelial glycocalyx in critically ill patients with COVID-19. Am J Respir Crit Care Med. 2020;202(8):1178–1181. doi: 10.1164/rccm.202007-2676LE.
    1. Stahl K, Bikker R, Seeliger B, Schmidt JJ, Schenk H, Schmidt BMW, et al. Effect of therapeutic plasma exchange on immunoglobulin deficiency in early and severe septic shock. J Intensive Care Med. 2020 doi: 10.1177/0885066620965169.
    1. Evanko SP, Tammi MI, Tammi RH, Wight TN. Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev. 2007;59(13):1351–1365. doi: 10.1016/j.addr.2007.08.008.
    1. Yini S, Heng Z, Xin A, Xiaochun M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand. 2015;59(2):160–169. doi: 10.1111/aas.12418.
    1. Marik PE. The role of glucocorticoids as adjunctive treatment for sepsis in the modern era. Lancet Respir Med. 2018;6(10):793–800. doi: 10.1016/S2213-2600(18)30265-0.
    1. Chappell D, Jacob M, Hofmann-Kiefer K, Bruegger D, Rehm M, Conzen P, et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology. 2007;107(5):776–784. doi: 10.1097/01.anes.0000286984.39328.96.
    1. Chappell D, Dörfler N, Jacob M, Rehm M, Welsch U, Conzen P, et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010;34(2):133–139. doi: 10.1097/SHK.0b013e3181cdc363.
    1. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol. 2009;104(1):78–89. doi: 10.1007/s00395-008-0749-5.
    1. Rinaldi S, Adembri C, Grechi S, De Gaudio AR. Low-dose hydrocortisone during severe sepsis: effects on microalbuminuria. Crit Care Med. 2006;34(9):2334–2339. doi: 10.1097/.
    1. Yoneda K, Walzer PD. The effect of corticosteroid treatment on the cell surface glycocalyx of the rat pulmonary alveolus: relevance to the host-parasite relationship in pneumocystis carinii infection. Br J Exp Pathol. 1984;65(3):347–354.
    1. Kirsch T, Beese M, Wyss K, Klinge U, Haller H, Haubitz M, et al. Aldosterone modulates endothelial permeability and endothelial nitric oxide synthase activity by rearrangement of the actin cytoskeleton. Hypertension (Dallas, Tex: 1979) 2013;61(2):501–508. doi: 10.1161/HYPERTENSIONAHA.111.196832.

Source: PubMed

3
Iratkozz fel