Broad targeting of angiogenesis for cancer prevention and therapy

Zongwei Wang, Charlotta Dabrosin, Xin Yin, Mark M Fuster, Alexandra Arreola, W Kimryn Rathmell, Daniele Generali, Ganji P Nagaraju, Bassel El-Rayes, Domenico Ribatti, Yi Charlie Chen, Kanya Honoki, Hiromasa Fujii, Alexandros G Georgakilas, Somaira Nowsheen, Amedeo Amedei, Elena Niccolai, Amr Amin, S Salman Ashraf, Bill Helferich, Xujuan Yang, Gunjan Guha, Dipita Bhakta, Maria Rosa Ciriolo, Katia Aquilano, Sophie Chen, Dorota Halicka, Sulma I Mohammed, Asfar S Azmi, Alan Bilsland, W Nicol Keith, Lasse D Jensen, Zongwei Wang, Charlotta Dabrosin, Xin Yin, Mark M Fuster, Alexandra Arreola, W Kimryn Rathmell, Daniele Generali, Ganji P Nagaraju, Bassel El-Rayes, Domenico Ribatti, Yi Charlie Chen, Kanya Honoki, Hiromasa Fujii, Alexandros G Georgakilas, Somaira Nowsheen, Amedeo Amedei, Elena Niccolai, Amr Amin, S Salman Ashraf, Bill Helferich, Xujuan Yang, Gunjan Guha, Dipita Bhakta, Maria Rosa Ciriolo, Katia Aquilano, Sophie Chen, Dorota Halicka, Sulma I Mohammed, Asfar S Azmi, Alan Bilsland, W Nicol Keith, Lasse D Jensen

Abstract

Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.

Keywords: Angiogenesis; Anti-angiogenic; Cancer; Phytochemicals; Treatment.

Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
Molecular mechanisms behind HIF regulation and responses in cells. The cellular oxygen sensing response is tightly regulated by a family of prolyl hydroxylases (PHD) which under normal oxygen conditions (normoxia; blue arrows) are responsible for hydroxylating proline residues on hypoxia inducible factor (HIF) alpha subunits. These hydroxylated residues are recognized by a pVHL-E3 ubiquitin ligase complex, whereby HIFalpha subunits are marked for polyubiquitination and subsequent proteosomal degradation. When oxygen levels are low (hypoxia; red arrow) PHDs cannot hydroxylate HIFalphas thereby allowing them to escape pVHL-mediated degradation. HIFalpha subunits accumulate and bind to their heterodimeric partner, HIFbeta, translocate into the nucleus and activate a cascade of hypoxic signaling first by the transcription of various target genes including microRNAs that are important for tumor promoting pathways. Alternatively, c-Src is also capable of activating HIFs by indirectly inhibiting PHD activity via the NADPH oxidase/Rac pathway. mTOR can also promote stabilization and HIF transcriptional activity. Critical points for therapeutic intervention include the use of c-Src and mTOR inhibitors to prevent HIFalpha accumulation and activation.

References

    1. Ribatti D., Djonov V. Intussusceptive microvascular growth in tumors. Cancer Lett. 2012;316:126–131.
    1. Cao Y., Arbiser J., D’Amato R.J., D’Amore P.A., Ingber D.E., Kerbel R. Forty-year journey of angiogenesis translational research. Sci Transl Med. 2011;3:114rv113.
    1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–1186.
    1. Bergers G., Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.
    1. Ribatti D. Endogenous inhibitors of angiogenesis: a historical review. Leuk Res. 2009;33:638–644.
    1. Landskroner-Eiger S., Moneke I., Sessa W.C. miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med. 2013;3:a006643.
    1. Hellstrom M., Phng L.K., Hofmann J.J., Wallgard E., Coultas L., Lindblom P. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445:776–780.
    1. Siekmann A.F., Lawson N.D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007;445:781–784.
    1. Jakobsson L., Franco C.A., Bentley K., Collins R.T., Ponsioen B., Aspalter I.M. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12:943–953.
    1. Krueger J., Liu D., Scholz K., Zimmer A., Shi Y., Klein C. Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development. 2011;138:2111–2120.
    1. Ridgway J., Zhang G., Wu Y., Stawicki S., Liang W.C., Chanthery Y. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444:1083–1087.
    1. Noguera-Troise I., Daly C., Papadopoulos N.J., Coetzee S., Boland P., Gale N.W. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444:1032–1037.
    1. Nagy J.A., Dvorak A.M., Dvorak H.F. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med. 2012;2:a006544.
    1. Xue Y., Lim S., Yang Y., Wang Z., Jensen L.D., Hedlund E.M. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med. 2012;18:100–110.
    1. Hosaka K., Yang Y., Seki T., Nakamura M., Andersson P., Rouhi P. Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis. Nat Commun. 2013;4:2129.
    1. Hedlund E.M., Yang X., Zhang Y., Yang Y., Shibuya M., Zhong W. Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs. Proc Natl Acad Sci U S A. 2013;110:654–659.
    1. van der Schaft D.W., Seftor R.E., Seftor E.A., Hess A.R., Gruman L.M., Kirschmann D.A. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst. 2004;96:1473–1477.
    1. Nagy J.A., Dvorak H.F. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis. 2012;29:657–662.
    1. Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.
    1. Shanmugam M.K., Dai X., Kumar A.P., Tan B.K., Sethi G., Bishayee A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett. 2014;346:206–216.
    1. Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Sci Signal. 2001;294:1337.
    1. Maxwell P., Wiesener M., Chang G., Clifford S., Vaux E., Cockman M. The tumour suppressor protein VHL targets hypoxia inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–275.
    1. Raval R.R., Lau K.W., Tran M.G.B., Sowter H.M., Mandriota S.J., Li J.L. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25:5675.
    1. Hu C.J., Wang L.Y., Chodosh L.A., Keith B., Simon M.C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361.
    1. Iliopoulos O., Levy A.P., Jiang C., Kaelin W.G., Goldberg M.A. Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc Natl Acad Sci U S A. 1996;93:10595–10599.
    1. Tosetti F., Ferrari N., De Flora S., Albini A. Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16:2–14.
    1. Ivan M., Harris A.L., Martelli F., Kulshreshtha R. Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med. 2008;12:1426–1431.
    1. Kaelin W.G. The von Hippel–Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res. 2004;10:6290S–6295S.
    1. Leong S.P., Cady B., Jablons D.M., Garcia-Aguilar J., Reintgen D., Jakub J. Clinical patterns of metastasis. Cancer Metastasis Rev. 2006;25:221–232.
    1. Sleeman J.P. The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res. 2000;157:55–81.
    1. Bono P., Wasenius V.M., Heikkila P., Lundin J., Jackson D.G., Joensuu H. High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res. 2004;10:7144–7149.
    1. Nakamura Y., Yasuoka H., Tsujimoto M., Imabun S., Nakahara M., Nakao K. Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat. 2005;91:125–132.
    1. Gombos Z., Xu X., Chu C.S., Zhang P.J., Acs G. Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix. Clin Cancer Res. 2005;11:8364–8371.
    1. Chen W., Shen W., Chen M., Cai G., Liu X. Study on the relationship between lymphatic vessel density and distal intramural spread of rectal cancer. Eur Surg Res. 2007;39:332–339.
    1. Renyi-Vamos F., Tovari J., Fillinger J., Timar J., Paku S., Kenessey I. Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res. 2005;11:7344–7353.
    1. Padera T.P., Kadambi A., di Tomaso E., Carreira C.M., Brown E.B., Boucher Y. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002;296:1883–1886.
    1. Wang X.L., Fang J.P., Tang R.Y., Chen X.M. Different significance between intratumoral and peritumoral lymphatic vessel density in gastric cancer: a retrospective study of 123 cases. BMC Cancer. 2010;10:299.
    1. Ravindranath M.H., Muthugounder S., Presser N., Viswanathan S. Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol. 2004;546:121–165.
    1. Mattila M.M., Ruohola J.K., Karpanen T., Jackson D.G., Alitalo K., Harkonen P.L. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer. 2002;98:946–951.
    1. Karpanen T., Egeblad M., Karkkainen M.J., Kubo H., Yla-Herttuala S., Jaattela M. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001;61:1786–1790.
    1. Ochi N., Matsuo Y., Sawai H., Yasuda A., Takahashi H., Sato M. Vascular endothelial growth factor-C secreted by pancreatic cancer cell line promotes lymphatic endothelial cell migration in an in vitro model of tumor lymphangiogenesis. Pancreas. 2007;34:444–451.
    1. Skobe M., Hawighorst T., Jackson D.G., Prevo R., Janes L., Velasco P. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–198.
    1. Mumprecht V., Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med. 2009;13:1405–1416.
    1. Ran S., Volk L., Hall K., Flister M.J. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology. 2010;17:229–251.
    1. Chang L.K., Garcia-Cardena G., Farnebo F., Fannon M., Chen E.J., Butterfield C. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A. 2004;101:11658–11663.
    1. Kubo H., Cao R., Brakenhielm E., Makinen T., Cao Y., Alitalo K. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A. 2002;99:8868–8873.
    1. Zhou J.R., Yu L., Zhong Y., Blackburn G.L. Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J Nutr. 2003;133:516–521.
    1. Kajiya K., Hirakawa S., Ma B., Drinnenberg I., Detmar M. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J. 2005;24:2885–2895.
    1. Zhou J.R., Yu L., Mai Z., Blackburn G.L. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer. 2004;108:8–14.
    1. Li H., Adachi Y., Yamamoto H., Min Y., Ohashi H., Ii M. Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer. 2011;117:3135–3147.
    1. Makinen T., Adams R.H., Bailey J., Lu Q., Ziemiecki A., Alitalo K. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005;19:397–410.
    1. Helfrich I., Edler L., Sucker A., Thomas M., Christian S., Schadendorf D. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res. 2009;15:1384–1392.
    1. Cao R., Bjorndahl M.A., Religa P., Clasper S., Garvin S., Galter D. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 2004;6:333–345.
    1. Banziger-Tobler N.E., Halin C., Kajiya K., Detmar M. Growth hormone promotes lymphangiogenesis. Am J Pathol. 2008;173:586–597.
    1. Hirakawa S., Kodama S., Kunstfeld R., Kajiya K., Brown L.F., Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089–1099.
    1. Hirakawa S., Brown L.F., Kodama S., Paavonen K., Alitalo K., Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood. 2007;109:1010–1017.
    1. Ishii H., Chikamatsu K., Sakakura K., Miyata M., Furuya N., Masuyama K. Primary tumor induces sentinel lymph node lymphangiogenesis in oral squamous cell carcinoma. Oral Oncol. 2010;46:373–378.
    1. Christiansen A., Detmar M. Lymphangiogenesis and cancer. Genes Cancer. 2011;2:1146–1158.
    1. Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17:1371–1380.
    1. Fukumura D., Jain R.K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem. 2007;101:937–949.
    1. Duong T., Koopman P., Francois M. Tumor lymphangiogenesis as a potential therapeutic target. J Oncol. 2012:204946.
    1. Roenneberg T. Chronobiology: the human sleep project. Nature. 2013;498:427–428.
    1. Jensen L.D., Cao Y.H. Clock controls angiogenesis. Cell Cycle. 2013;12:405–408.
    1. Jensen L.D., Cao Z., Nakamura M., Yang Y., Brautigam L., Andersson P. Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep. 2012;2:231–241.
    1. Schernhammer E.S., Laden F., Speizer F.E., Willett W.C., Hunter D.J., Kawachi I. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95:825–828.
    1. Schernhammer E.S., Laden F., Speizer F.E., Willett W.C., Hunter D.J., Kawachi I. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst. 2001;93:1563–1568.
    1. Rao S., Chun C., Fan J., Kofron J.M., Yang M.B., Hegde R.S. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature. 2013;494:243–246.
    1. Busik J.V., Tikhonenko M., Bhatwadekar A., Opreanu M., Yakubova N., Caballero S. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med. 2009;206:2897–2906.
    1. Anea C.B., Cheng B., Sharma S., Kumar S., Caldwell R.W., Yao L. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ Res. 2012;111:1157–1165.
    1. Wang C.Y., Wen M.S., Wang H.W., Hsieh I.C., Li Y., Liu P.Y. Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2. Circulation. 2008;118:2166–2173.
    1. Koyanagi S., Kuramoto Y., Nakagawa H., Aramaki H., Ohdo S., Soeda S. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63:7277–7283.
    1. Guzy R.D., Schumacker P.T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–819.
    1. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705–713.
    1. Gillies R.J., Verduzco D., Gatenby R.A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012;12:487–493.
    1. Ferrara N. Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr Opin Hematol. 2010;17:219–224.
    1. Apte R.N., Krelin Y., Song X., Dotan S., Recih E., Elkabets M. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour–host interactions. Eur J Cancer. 2006;42:751–759.
    1. Nicolini A., Carpi A., Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev. 2006;17:325–337.
    1. Crawford Y., Kasman I., Yu L., Zhong C., Wu X., Modrusan Z. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 2009;15:21–34.
    1. Ricci-Vitiani L., Pallini R., Biffoni M., Todaro M., Invernici G., Cenci T. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–828.
    1. Maione F., Capano S., Regano D., Zentilin L., Giacca M., Casanovas O. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J Clin Invest. 2012;122:1832–1848.
    1. Paez-Ribes M., Allen E., Hudock J., Takeda T., Okuyama H., Vinals F. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–231.
    1. Ebos J.M., Lee C.R., Cruz-Munoz W., Bjarnason G.A., Christensen J.G., Kerbel R.S. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–239.
    1. Lu K.V., Chang J.P., Parachoniak C.A., Pandika M.M., Aghi M.K., Meyronet D. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22:21–35.
    1. Jensen L.D., Cao R., Cao Y. In vivo angiogenesis and lymphangiogenesis models. Curr Mol Med. 2009;9:982–991.
    1. Jensen L.D., Rouhi P., Cao Z., Lanne T., Wahlberg E., Cao Y. Zebrafish models to study hypoxia-induced pathological angiogenesis in malignant and nonmalignant diseases. Birth Defects Res C Embryo Today. 2011;93:182–193.
    1. Willett C.G., Boucher Y., di Tomaso E., Duda D.G., Munn L.L., Tong R.T. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–147.
    1. Lockhart A.C., Rothenberg M.L., Dupont J., Cooper W., Chevalier P., Sternas L. Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol. 2010;28:207–214.
    1. Zhong H., Chiles K., Feldser D., Laughner E., Hanrahan C., Georgescu M.M. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60:1541–1545.
    1. Mabjeesh N.J., Post D.E., Willard M.T., Kaur B., Van Meir E.G., Simons J.W. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478–2482.
    1. Gotink K.J., Verheul H.M. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis. 2010;13:1–14.
    1. Mihaly Z., Sztupinszki Z., Surowiak P., Gyorffy B. A comprehensive overview of targeted therapy in metastatic renal cell carcinoma. Curr Cancer Drug Targets. 2012;12:857–872.
    1. Grothey A., Van Cutsem E., Sobrero A., Siena S., Falcone A., Ychou M. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–312.
    1. Yashiro M., Shinto O., Nakamura K., Tendo M., Matsuoka T., Matsuzaki T. Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. Br J Cancer. 2009;101:1100–1106.
    1. Penel N., Adenis A., Bocci G. Cyclophosphamide-based metronomic chemotherapy: after 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol. 2012;82:40–50.
    1. Kerbel R.S. Reappraising antiangiogenic therapy for breast cancer. Breast. 2011;20(Suppl. 3):S56–S60.
    1. Miller K.D., Sweeney C.J., Sledge G.W., Jr. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol. 2001;19:1195–1206.
    1. Klauber N., Parangi S., Flynn E., Hamel E., D’Amato R.J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997;57:81–86.
    1. Browder T., Butterfield C.E., Kraling B.M., Shi B., Marshall B., O’Reilly M.S. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878–1886.
    1. Singhal S., Mehta J., Desikan R., Ayers D., Roberson P., Eddlemon P. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–1571.
    1. Wood J., Bonjean K., Ruetz S., Bellahcene A., Devy L., Foidart J.M. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther. 2002;302:1055–1061.
    1. Santini D., Vincenzi B., Dicuonzo G., Avvisati G., Massacesi C., Battistoni F. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res. 2003;9:2893–2897.
    1. Land S.C., Tee A.R. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007;282:20534–20543.
    1. Hudson C.C., Liu M., Chiang G.G., Otterness D.M., Loomis D.C., Kaper F. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–7014.
    1. Guba M., von Breitenbuch P., Steinbauer M., Koehl G., Flegel S., Hornung M. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–135.
    1. Zhang D., Hedlund E.M., Lim S., Chen F., Zhang Y., Sun B. Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity. Proc Natl Acad Sci U S A. 2011;108:4117–4122.
    1. Singh B.N., Singh B.R., Sarma B.K., Singh H.B. Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interact. 2009;181:20–28.
    1. Singh B.N., Singh H.B., Singh A., Naqvi A.H., Singh B.R. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev. 2014;33(1):41–85.
    1. Singh B.N., Shankar S., Srivastava R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807–1821.
    1. Gullett N.P., Ruhul Amin A.R., Bayraktar S., Pezzuto J.M., Shin D.M., Khuri F.R. Cancer prevention with natural compounds. Semin Oncol. 2010;37:258–281.
    1. Singh M., Singh P., Shukla Y. New strategies in cancer chemoprevention by phytochemicals. Front Biosci (Elite Ed) 2012;4:426–452.
    1. Bishayee A. Editorial: current advances in cancer prevention and treatment by natural products. Curr Pharm Biotechnol. 2012;13:115–116.
    1. Jeong D., Watari K., Shirouzu T., Ono M., Koizumi K., Saiki I. Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs. Biol Pharm Bull. 2013;36:152–157.
    1. Kimura Y., Sumiyoshi M. Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine. 2013;20:328–336.
    1. Luo Y., Chen W., Zhou H., Liu L., Shen T., Alexander J.S. Cryptotanshinone inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3/ERK and small GTPase pathways. Cancer Prev Res (Phila) 2011;4:2083–2091.
    1. Coussens L.M., Fingleton B., Matrisian L.M. Cancer therapy – matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295:2387–2392.
    1. Bendrik C., Robertson J., Gauldie J., Dabrosin C. Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo. Cancer Res. 2008;68:3405–3412.
    1. Hamano Y., Zeisberg M., Sugimoto H., Lively J.C., Maeshima Y., Yang C.Q. Physiological levels of tumstatin, a fragment of collagen IV alpha 3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alpha V beta 3 integrin. Cancer Cell. 2003;3:589–601.
    1. Nilsson U.W., Dabrosin C. Estradiol and tamoxifen regulate endostatin generation via matrix metalloproteinase activity in breast cancer in vivo. Cancer Res. 2006;66:4789–4794.
    1. Pozzi A., LeVine W.F., Gardner H.A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene. 2002;21:272–281.
    1. Decock J., Thirkettle S., Wagstaff L., Edwards D.R. Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med. 2011;15:1254–1265.
    1. Leifler K.S., Svensson S., Abrahamsson A., Bendrik C., Robertson J., Gauldie J. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol. 2013;190:4420–4430.
    1. Partridge J.J., Madsen M.A., Ardi V.C., Papagiannakopoulos T., Kupriyanova T.A., Quigley J.P. Functional analysis of matrix metalloproteinases and tissue inhibitors of metalloproteinases differentially expressed by variants of human HT-1080 fibrosarcoma exhibiting high and low levels of intravasation and metastasis. J Biol Chem. 2007;282:35964–35977.
    1. Kopitz C., Gerg M., Bandapalli O.R., Ister D., Pennington C.J., Hauser S. Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res. 2007;67:8615–8623.
    1. Lipton A., Ali S.M., Leitzel K., Demers L., Evans D.B., Hamer P. Elevated plasma tissue inhibitor of metalloproteinase-1 level predicts decreased response and survival in metastatic breast cancer. Cancer. 2007;109:1933–1939.
    1. Miyagi M., Aoyagi K., Kato S., Shirouzu K. The TIMP-1 gene transferred through adenovirus mediation shows a suppressive effect on peritoneal metastases from gastric cancer. Int J Clin Oncol. 2007;12:17–24.
    1. Klintman M., Wurtz S.O., Christensen I.J., Hertel P.B., Ferno M., Malmberg M. Association between tumor tissue TIMP-1 levels and objective response to first-line chemotherapy in metastatic breast cancer. Breast Cancer Res Treat. 2010;121:365–371.
    1. Schrohl A.S., Christensen I.J., Pedersen A.N., Jensen V., Mouridsen H., Murphy G. Tumor tissue concentrations of the proteinase inhibitors tissue inhibitor of metalloproteinases-1 (TIMP-1) and plasminogen activator inhibitor type 1 (PAI-1) are complementary in determining prognosis in primary breast cancer. Mol Cell Proteomics. 2003;2:164–172.
    1. Schrohl A.S., Look M.P., Meijer-van Gelder M.E., Foekens J.A., Brunner N. Tumor tissue levels of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) and outcome following adjuvant chemotherapy in premenopausal lymph node-positive breast cancer patients: a retrospective study. BMC Cancer. 2009;9
    1. Stanley G., Harvey K., Slivova V., Jiang J., Sliva D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta1 from prostate cancer cells. Biochem Biophys Res Commun. 2005;330:46–52.
    1. Brakenhielm E., Cao R., Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 2001;15:1798–1800.
    1. Huang Y.T., Hwang J.J., Lee P.P., Ke F.C., Huang J.H., Huang C.J. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. 1999;128:999–1010.
    1. Tosetti F., Benelli R., Albini A. The angiogenic switch in solid tumors: clinical implications. Suppl Tumori. 2002;1:S9–S11.
    1. Cao Y., Cao R. Angiogenesis inhibited by drinking tea. Nature. 1999;398:381.
    1. Sartippour M.R., Shao Z.M., Heber D., Beatty P., Zhang L., Liu C. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr. 2002;132:2307–2311.
    1. Maeda-Yamamoto M., Kawahara H., Tahara N., Tsuji K., Hara Y., Isemura M. Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem. 1999;47:2350–2354.
    1. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007;18:427–442.
    1. Yang H., Sun D.K., Chen D., Cui Q.C., Gu Y.Y., Jiang T. Antitumor activity of novel fluoro-substituted (−)-epigallocatechin-3-gallate analogs. Cancer Lett. 2010;292:48–53.
    1. Slivova V., Zaloga G., DeMichele S.J., Mukerji P., Huang Y.S., Siddiqui R. Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutr Cancer. 2005;52:66–73.
    1. Sen T., Moulik S., Dutta A., Choudhury P.R., Banerji A., Das S. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sci. 2009;84:194–204.
    1. Lin J.K., Liang Y.C., Lin-Shiau S.Y. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol. 1999;58:911–915.
    1. Jung Y.D., Kim M.S., Shin B.A., Chay K.O., Ahn B.W., Liu W. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer. 2001;84:844–850.
    1. Khan N., Adhami V.M., Mukhtar H. Review: green tea polyphenols in chemoprevention of prostate cancer: preclinical and clinical studies. Nutr Cancer. 2009;61:836–841.
    1. Yang C.S., Wang X., Lu G., Picinich S.C. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009;9:429–439.
    1. Jankun J., Selman S.H., Swiercz R., Skrzypczak-Jankun E. Why drinking green tea could prevent cancer. Nature. 1997;387:561.
    1. Hastak K., Gupta S., Ahmad N., Agarwal M.K., Agarwal M.L., Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003;22:4851–4859.
    1. Masuda M., Suzui M., Lim J.T., Deguchi A., Soh J.W., Weinstein I.B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol. 2002;2:350–359.
    1. Naksuriya O., Okonogi S., Schiffelers R.M., Hennink W.E. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365–3383.
    1. Aggarwal B.B., Gupta S.C., Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169:1672–1692.
    1. Arbiser J.L., Klauber N., Rohan R., van Leeuwen R., Huang M.T., Fisher C. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998;4:376–383.
    1. Hong J.H., Ahn K.S., Bae E., Jeon S.S., Choi H.Y. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis. 2006;9:147–152.
    1. Yoysungnoen P., Wirachwong P., Bhattarakosol P., Niimi H., Patumraj S. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 2006;34:109–115.
    1. Hasima N., Aggarwal B.B. Cancer-linked targets modulated by curcumin. Int J Biochem Mol Biol. 2012;3:328–351.
    1. Shukla Y., Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1–8.
    1. Garvin S., Ollinger K., Dabrosin C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett. 2006;231:113–122.
    1. Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2009;2:409–418.
    1. Bishayee A., Petit D.M., Samtani K. Angioprevention is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. J Carcinog Mutagen. 2010:1.
    1. Cao Z., Fang J., Xia C., Shi X., Jiang B.H. trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin Cancer Res. 2004;10:5253–5263.
    1. Liu Z., Li Y., Yang R. Effects of resveratrol on vascular endothelial growth factor expression in osteosarcoma cells and cell proliferation. Oncol Lett. 2012;4:837–839.
    1. Srivastava R.K., Unterman T.G., Shankar S. FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem. 2010;337:201–212.
    1. Marti-Centelles R., Cejudo-Marin R., Falomir E., Murga J., Carda M., Marco J.A. Inhibition of VEGF expression in cancer cells and endothelial cell differentiation by synthetic stilbene derivatives. Bioorg Med Chem. 2013;21:3010–3015.
    1. Jung D.B., Lee H.J., Jeong S.J., Lee E.O., Kim Y.C., Ahn K.S. Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells. Biol Pharm Bull. 2011;34:850–855.
    1. Kimura Y., Sumiyoshi M., Baba K. Antitumor activities of synthetic and natural stilbenes through antiangiogenic action. Cancer Sci. 2008;99:2083–2096.
    1. Fotsis T., Pepper M.S., Aktas E., Breit S., Rasku S., Adlercreutz H. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 1997;57:2916–2921.
    1. Fotsis T., Pepper M., Adlercreutz H., Hase T., Montesano R., Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr. 1995;125:790S–797S.
    1. van Meeteren M.E., Hendriks J.J., Dijkstra C.D., van Tol E.A. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem Pharmacol. 2004;67:967–975.
    1. Chen A.Y., Chen Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138:2099–2107.
    1. Duthie G., Crozier A. Plant-derived phenolic antioxidants. Curr Opin Clin Nutr Metab Care. 2000;3:447–451.
    1. Cortes J.R., Perez G.M., Rivas M.D., Zamorano J. Kaempferol inhibits IL-4-induced STAT6 activation by specifically targeting JAK3. J Immunol. 2007;179:3881–3887.
    1. Lee K.M., Lee K.W., Jung S.K., Lee E.J., Heo Y.S., Bode A.M. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem Pharmacol. 2010;80:2042–2049.
    1. Garcia-Mediavilla V., Crespo I., Collado P.S., Esteller A., Sanchez-Campos S., Tunon M.J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol. 2007;557:221–229.
    1. Suh Y., Afaq F., Johnson J.J., Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis. 2009;30:300–307.
    1. Singh R.P., Sharma G., Dhanalakshmi S., Agarwal C., Agarwal R. Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomarkers Prev. 2003;12:933–939.
    1. Singh R.P., Dhanalakshmi S., Agarwal C., Agarwal R. Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: implications for angioprevention and antiangiogenic therapy. Oncogene. 2005;24:1188–1202.
    1. Jiang C., Agarwal R., Lu J. Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem Biophys Res Commun. 2000;276:371–378.
    1. Tsai S.H., Liang Y.C., Lin-Shiau S.Y., Lin J.K. Suppression of TNFalpha-mediated NFkappaB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells. J Cell Biochem. 1999;74:606–615.
    1. Bertl E., Bartsch H., Gerhauser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther. 2006;5:575–585.
    1. Kim Y.H., Shin E.K., Kim D.H., Lee H.H., Park J.H., Kim J.K. Antiangiogenic effect of licochalcone A. Biochem Pharmacol. 2010;80:1152–1159.
    1. Kwon G.T., Cho H.J., Chung W.Y., Park K.K., Moon A., Park J.H. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem. 2009;20:663–676.
    1. Hasmeda M., Kweifio-Okai G., Macrides T., Polya G.M. Selective inhibition of eukaryote protein kinases by anti-inflammatory triterpenoids. Planta Med. 1999;65:14–18.
    1. Beveridge T.H., Li T.S., Drover J.C. Phytosterol content in American ginseng seed oil. J Agric Food Chem. 2002;50:744–750.
    1. Thoppil R.J., Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol. 2011;3:228–249.
    1. Bishayee A., Ahmed S., Brankov N., Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci (Landmark Ed) 2011;16:980–996.
    1. Sethi G., Ahn K.S., Pandey M.K., Aggarwal B.B. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood. 2007;109:2727–2735.
    1. Huang Y., Zhou Y., Fan Y., Zhou D. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett. 2008;264:101–106.
    1. Matsuda H., Li Y., Murakami T., Ninomiya K., Yamahara J., Yoshikawa M. Effects of escins Ia, Ib, IIa, and IIb from horse chestnut, the seeds of Aesculus hippocastanum L., on acute inflammation in animals. Biol Pharm Bull. 1997;20:1092–1095.
    1. Wang X.H., Xu B., Liu J.T., Cui J.R. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis. Vasc Pharmacol. 2008;49:158–165.
    1. Yang H., Shi G., Dou Q.P. The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol. 2007;71:426–437.
    1. Mohan R., Hammers H.J., Bargagna-Mohan P., Zhan X.H., Herbstritt C.J., Ruiz A. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 2004;7:115–122.
    1. Jayaprakasam B., Zhang Y., Seeram N.P., Nair M.G. Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci. 2003;74:125–132.
    1. Park J.S., Chew B.P., Wong T.S. Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c mice. J Nutr. 1998;128:1650–1656.
    1. Krinsky N.I., Johnson E.J. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26:459–516.
    1. Milder I.E., Arts I.C., van de Putte B., Venema D.P., Hollman P.C. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr. 2005;93:393–402.
    1. Thompson L.U., Boucher B.A., Liu Z., Cotterchio M., Kreiger N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer. 2006;54:184–201.
    1. Mazur W., Fotsis T., Wahala K., Ojala S., Salakka A., Adlercreutz H. Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal Biochem. 1996;233:169–180.
    1. Touillaud M.S., Thiebaut A.C., Fournier A., Niravong M., Boutron-Ruault M.C., Clavel-Chapelon F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst. 2007;99:475–486.
    1. Trock B.J., Hilakivi-Clarke L., Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst. 2006;98:459–471.
    1. Banerjee S., Li Y., Wang Z., Sarkar F.H. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008;269:226–242.
    1. Helferich W.G., Andrade J.E., Hoagland M.S. Phytoestrogens and breast cancer: a complex story. Inflammopharmacology. 2008;16:219–226.
    1. Lindahl G., Saarinen N., Abrahamsson A., Dabrosin C. Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Res. 2011;71:51–60.
    1. Bergman Jungestrom M., Thompson L.U., Dabrosin C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res. 2007;13:1061–1067.
    1. Saarinen N.M., Abrahamsson A., Dabrosin C. Estrogen-induced angiogenic factors derived from stromal and cancer cells are differently regulated by enterolactone and genistein in human breast cancer in vivo. Int J Cancer. 2010;127:737–745.
    1. Chatterjee S., Bhattacharjee B. Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor. Bioinformation. 2012;8:1249–1254.
    1. Abusnina A., Keravis T., Zhou Q., Justiniano H., Lobstein A., Lugnier C. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition. Thromb Haemost. 2015;113:319–328.
    1. Rath S., Liebl J., Furst R., Ullrich A., Burkhart J.L., Kazmaier U. Anti-angiogenic effects of the tubulysin precursor pretubulysin and of simplified pretubulysin derivatives. Br J Pharmacol. 2012;167:1048–1061.
    1. Schluep T., Gunawan P., Ma L., Jensen G.S., Duringer J., Hinton S. Polymeric tubulysin-peptide nanoparticles with potent antitumor activity. Clin Cancer Res. 2009;15:181–189.
    1. Kubisch R., von Gamm M., Braig S., Ullrich A., Burkhart J.L., Colling L. Simplified pretubulysin derivatives and their biological effects on cancer cells. J Nat Prod. 2014;77:536–542.
    1. Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–760.
    1. Gref R., Minamitake Y., Peracchia M.T., Trubetskoy V., Torchilin V., Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–1603.
    1. Siddiqui I.A., Adhami V.M., Bharali D.J., Hafeez B.B., Asim M., Khwaja S.I. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res. 2009;69:1712–1716.
    1. Luo H., Jiang B., Li B., Li Z., Jiang B.H., Chen Y.C. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int J Nanomed. 2012;7:3951–3959.
    1. Gou M., Men K., Shi H., Xiang M., Zhang J., Song J. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3:1558–1567.
    1. Wang L., Li H., Wang S., Liu R., Wu Z., Wang C. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech. 2014;15:834–844.
    1. Parikh N.R., Mandal A., Bhatia D., Siveen K.S., Sethi G., Bishayee A. Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives. Phytochem Rev. 2014;13:793–810.
    1. Sohn K.H., Lee H.Y., Chung H.Y., Young H.S., Yi S.Y., Kim K.W. Anti-angiogenic activity of triterpene acids. Cancer Lett. 1995;94:213–218.
    1. Sogno I., Vannini N., Lorusso G., Cammarota R., Noonan D.M., Generoso L. Anti-angiogenic activity of a novel class of chemopreventive compounds: oleanic acid terpenoids. Recent Results Cancer Res. 2009;181:209–212.
    1. Masferrer J.L., Leahy K.M., Koki A.T., Zweifel B.S., Settle S.L., Woerner B.M. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–1311.
    1. Parrett M., Harris R., Joarder F., Ross M., Clausen K., Robertson F. Cyclooxygenase-2 gene expression in human breast cancer. Int J Oncol. 1997;10:503–507.
    1. Voss M.J., Niggemann B., Zanker K.S., Entschladen F. Tumour reactions to hypoxia. Curr Mol Med. 2010;10:381–386.
    1. Lofstedt T., Jogi A., Sigvardsson M., Gradin K., Poellinger L., Pahlman S. Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. J Biol Chem. 2004;279:39223–39231.
    1. Garcia-Maceira P., Mateo J. Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene. 2009;28:313–324.
    1. Otalora B.B., Madrid J.A., Alvarez N., Vicente V., Rol M.A. Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice. J Pineal Res. 2008;44:307–315.
    1. Trapp V., Parmakhtiar B., Papazian V., Willmott L., Fruehauf J.P. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis. 2010;13:305–315.
    1. Park S.Y., Jeong K.J., Lee J., Yoon D.S., Choi W.S., Kim Y.K. Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: their inhibition by resveratrol. Cancer Lett. 2007;258:63–69.
    1. Li J.L., Sainson R.C., Shi W., Leek R., Harrington L.S., Preusser M. Delta-like 4 notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 2007;67:11244–11253.
    1. Lickliter J.D., Francesconi A.B., Smith G., Burge M., Coulthard A., Rose S. Phase I trial of CYT997, a novel cytotoxic and vascular-disrupting agent. Br J Cancer. 2010;103:597–606.
    1. Lekli I., Ray D., Mukherjee S., Gurusamy N., Ahsan M.K., Juhasz B. Co-ordinated autophagy with resveratrol and gamma-tocotrienol confers synergetic cardioprotection. J Cell Mol Med. 2010;14:2506–2518.
    1. Kuang X., Yao Y., Du J.R., Liu Y.X., Wang C.Y., Qian Z.M. Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice. Brain Res. 2006;1102:145–153.
    1. Forssell J., Oberg A., Henriksson M.L., Stenling R., Jung A., Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13:1472–1479.
    1. Garaude J., Kent A., van Rooijen N., Blander J.M. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med. 2012;4:120ra116.
    1. Tosetti F., Noonan D.M., Albini A. Metabolic regulation and redox activity as mechanisms for angioprevention by dietary phytochemicals. Int J Cancer. 2009;125:1997–2003.
    1. Deep G., Gangar S.C., Rajamanickam S., Raina K., Gu M., Agarwal C. Angiopreventive efficacy of pure flavonolignans from milk thistle extract against prostate cancer: targeting VEGF–VEGFR signaling. PLoS ONE. 2012;7:e34630.
    1. Surh Y.J. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–780.
    1. Thomasset S.C., Berry D.P., Garcea G., Marczylo T., Steward W.P., Gescher A.J. Dietary polyphenolic phytochemicals – promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer. 2007;120:451–458.
    1. Bisacchi D., Benelli R., Vanzetto C., Ferrari N., Tosetti F., Albini A. Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detect Prev. 2003;27:229–238.
    1. Macpherson H., Pipingas A., Pase M.P. Multivitamin-multimineral supplementation and mortality: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2013;97:437–444.
    1. Klein E.A., Thompson I.M., Jr., Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT) JAMA. 2011;306:1549–1556.
    1. Sommer A., Vyas K.S. A global clinical view on vitamin A and carotenoids. Am J Clin Nutr. 2012;96:1204S–1206S.
    1. Yang Y., Zhang Y., Cao Z., Ji H., Yang X., Iwamoto H. Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc Natl Acad Sci U S A. 2013;110:12018–12023.
    1. Kumareswaran R., Ludkovski O., Meng A., Sykes J., Pintilie M., Bristow R.G. Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci. 2012;125:189–199.
    1. Gaddameedhi S., Reardon J.T., Ye R., Ozturk N., Sancar A. Effect of circadian clock mutations on DNA damage response in mammalian cells. Cell Cycle. 2012;11:3481–3491.
    1. Dai C., Sun F., Zhu C., Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability – an implication in aneuploid human tumors. PLOS ONE. 2013;8:e63054.
    1. Xiang L., Gilkes D.M., Chaturvedi P., Luo W., Hu H., Takano N. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J Mol Med (Berl) 2014;92:151–164.
    1. Leelahavanichkul K., Amornphimoltham P., Molinolo A.A., Basile J.R., Koontongkaew S., Gutkind J.S. A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis. Mol Oncol. 2014;8:105–118.
    1. Thiele W., Rothley M., Teller N., Jung N., Bulat B., Plaumann D. Delphinidin is a novel inhibitor of lymphangiogenesis but promotes mammary tumor growth and metastasis formation in syngeneic experimental rats. Carcinogenesis. 2013;34:2804–2813.
    1. Yu T., Liu K., Wu Y., Fan J., Chen J., Li C. High interstitial fluid pressure promotes tumor cell proliferation and invasion in oral squamous cell carcinoma. Int J Mol Med. 2013;32:1093–1100.
    1. Hofmann M., Guschel M., Bernd A., Bereiter-Hahn J., Kaufmann R., Tandi C. Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia. 2006;8:89–95.
    1. Rana S., Munawar M., Shahid A., Malik M., Ullah H., Fatima W. Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia. Mol Biol Rep. 2014;41:95–103.
    1. Sotak M., Polidarova L., Ergang P., Sumova A., Pacha J. An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors. Int J Cancer. 2013;132:1032–1041.
    1. Orimo A., Gupta P.B., Sgroi D.C., Arenzana-Seisdedos F., Delaunay T., Naeem R. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–348.
    1. Jia C.C., Wang T.T., Liu W., Fu B.S., Hua X., Wang G.Y. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLOS ONE. 2013;8:e63243.
    1. Wang Y.H., Dong Y.Y., Wang W.M., Xie X.Y., Wang Z.M., Chen R.X. Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-kappaB pathways induced by paracrine cytokines. J Exp Clin Cancer Res. 2013;32:51.
    1. Shi S., Chen L., Huang G. Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature. Med Oncol. 2013;30:698.
    1. Casazza A., Laoui D., Wenes M., Rizzolio S., Bassani N., Mambretti M. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 2013;24:695–709.
    1. Tripathi C., Tewari B.N., Kanchan R.K., Baghel K.S., Nautiyal N., Shrivastava R. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget. 2014;5:5350–5368.
    1. Tomei A.A., Siegert S., Britschgi M.R., Luther S.A., Swartz M.A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J Immunol. 2009;183:4273–4283.
    1. Mamlouk S., Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer. 2013;132:2721–2729.
    1. Lee J.H., Sancar A. Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A. 2011;108:12036–12041.
    1. Erez N., Truitt M., Olson P., Arron S.T., Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010;17:135–147.
    1. Ohashi T., Akazawa T., Aoki M., Kuze B., Mizuta K., Ito Y. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer. 2013;133:1107–1118.
    1. Ghajar C.M., Peinado H., Mori H., Matei I.R., Evason K.J., Brazier H. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–817.
    1. Gardner L.B., Li Q., Park M.S., Flanagan W.M., Semenza G.L., Dang C.V. Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem. 2001;276:7919–7926.
    1. Goda N., Ryan H.E., Khadivi B., McNulty W., Rickert R.C., Johnson R.S. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol. 2003;23:359–369.
    1. Yamanda S., Ebihara S., Asada M., Okazaki T., Niu K., Ebihara T. Role of ephrinB2 in nonproductive angiogenesis induced by Delta-like 4 blockade. Blood. 2009;113:3631–3639.
    1. Bussink J., Kaanders J.H., Rijken P.F., Martindale C.A., van der Kogel A.J. Multiparameter analysis of vasculature, perfusion and proliferation in human tumour xenografts. Br J Cancer. 1998;77:57–64.
    1. Rupertus K., Dahlem C., Menger M.D., Schilling M.K., Kollmar O. Rapamycin inhibits hepatectomy-induced stimulation of metastatic tumor growth by reduction of angiogenesis, microvascular blood perfusion, and tumor cell proliferation. Ann Surg Oncol. 2009;16:2629–2637.
    1. Li X.M., Delaunay F., Dulong S., Claustrat B., Zampera S., Fujii Y. Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res. 2010;70:3351–3360.
    1. Yang W.S., Stockwell B.R. Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol. 2008;9:R92.
    1. Lin H., Yan J., Wang Z., Hua F., Yu J., Sun W. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology. 2013;57:171–182.
    1. Wang W., Li Q., Yamada T., Matsumoto K., Matsumoto I., Oda M. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res. 2009;15:6630–6638.
    1. Pontiggia O., Sampayo R., Raffo D., Motter A., Xu R., Bissell M.J. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat. 2012;133:459–471.
    1. Madhok B.M., Yeluri S., Perry S.L., Hughes T.A., Jayne D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer. 2010;102:1746–1752.
    1. Riemann A., Schneider B., Ihling A., Nowak M., Sauvant C., Thews O. Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS ONE. 2011;6:e22445.
    1. Vangestel C., Van de Wiele C., Van Damme N., Staelens S., Pauwels P., Reutelingsperger C.P. (99)mTc-(CO)(3) His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab. J Nucl Med. 2011;52:1786–1794.
    1. Hernandez-Luna M.A., Rocha-Zavaleta L., Vega M.I., Huerta-Yepez S. Hypoxia inducible factor-1alpha induces chemoresistance phenotype in non-Hodgkin lymphoma cell line via up-regulation of Bcl-xL. Leuk Lymphoma. 2013;54:1048–1055.
    1. Islam N., Haqqi T.M., Jepsen K.J., Kraay M., Welter J.F., Goldberg V.M. Hydrostatic pressure induces apoptosis in human chondrocytes from osteoarthritic cartilage through up-regulation of tumor necrosis factor-alpha, inducible nitric oxide synthase, p53, c-myc, and bax-alpha, and suppression of bcl-2. J Cell Biochem. 2002;87:266–278.
    1. Campbell N.E., Greenaway J., Henkin J., Moorehead R.A., Petrik J. The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer. Neoplasia. 2010;12:275–283.
    1. Hua H., Wang Y., Wan C., Liu Y., Zhu B., Yang C. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 2006;97:589–596.
    1. Schafer H., Struck B., Feldmann E.M., Bergmann F., Grage-Griebenow E., Geismann C. TGF-beta1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene. 2013;32:180–189.
    1. Kinugasa Y., Matsui T., Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells. 2014;32:145–156.
    1. Golding J.P., Wardhaugh T., Patrick L., Turner M., Phillips J.B., Bruce J.I. Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br J Cancer. 2013;109:976–982.
    1. Nishi H., Nakada T., Kyo S., Inoue M., Shay J.W., Isaka K. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT) Mol Cell Biol. 2004;24:6076–6083.
    1. Heeg S., Hirt N., Queisser A., Schmieg H., Thaler M., Kunert H. EGFR overexpression induces activation of telomerase via PI3K/AKT-mediated phosphorylation and transcriptional regulation through Hif1-alpha in a cellular model of oral-esophageal carcinogenesis. Cancer Sci. 2011;102:351–360.
    1. Anderson C.J., Hoare S.F., Ashcroft M., Bilsland A.E., Keith W.N. Hypoxic regulation of telomerase gene expression by transcriptional and post-transcriptional mechanisms. Oncogene. 2006;25:61–69.
    1. Qu Y., Wang Z., Huang X., Wan C., Yang C.L., Liu B. Circadian telomerase activity and DNA synthesis for timing peptide administration. Peptides. 2003;24:363–369.
    1. Qu Y., Mao M., Li X., Liu Y., Ding J., Jiang Z. Telomerase reconstitution contributes to resetting of circadian rhythm in fibroblasts. Mol Cell Biochem. 2008;313:11–18.
    1. Martinive P., Defresne F., Bouzin C., Saliez J., Lair F., Gregoire V. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res. 2006;66:11736–11744.
    1. Mazzone M., Dettori D., Leite de Oliveira R., Loges S., Schmidt T., Jonckx B. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell. 2009;136:839–851.
    1. Kieda C., El Hafny-Rahbi B., Collet G., Lamerant-Fayel N., Grillon C., Guichard A. Stable tumor vessel normalization with pO(2) increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment. J Mol Med (Berl) 2013;91:883–899.
    1. Sun R.C., Denko N.C. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014;19:285–292.
    1. Liao J., Qian F., Tchabo N., Mhawech-Fauceglia P., Beck A., Qian Z. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLOS ONE. 2014;9:e84941.
    1. Lamonte G., Tang X., Chen J.L., Wu J., Ding C.K., Keenan M.M. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 2013;1:23.
    1. Matsubara T., Diresta G.R., Kakunaga S., Li D., Healey J.H. Additive influence of extracellular pH, oxygen tension, and pressure on invasiveness and survival of human osteosarcoma cells. Front Oncol. 2013;3:199.
    1. Kelly C.J., Hussien K., Fokas E., Kannan P., Shipley R.J., Ashton T.M. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia. Radiother Oncol. 2014;111:72–80.
    1. Seront E., Boidot R., Bouzin C., Karroum O., Jordan B.F., Gallez B. Tumour hypoxia determines the potential of combining mTOR and autophagy inhibitors to treat mammary tumours. Br J Cancer. 2013;109:2597–2606.
    1. Okazaki H., Matsunaga N., Fujioka T., Okazaki F., Akagawa Y., Tsurudome Y. Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma. Cancer Res. 2014;74:543–551.
    1. Rattigan Y.I., Patel B.B., Ackerstaff E., Sukenick G., Koutcher J.A., Glod J.W. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res. 2012;318:326–335.
    1. Wojtkowiak J.W., Rothberg J.M., Kumar V., Schramm K.J., Haller E., Proemsey J.B. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res. 2012;72:3938–3947.
    1. Belkin D.A., Mitsui H., Wang C.Q., Gonzalez J., Zhang S., Shah K.R. CD200 upregulation in vascular endothelium surrounding cutaneous squamous cell carcinoma. JAMA Dermatol. 2013;149:178–186.
    1. Hamzah J., Jugold M., Kiessling F., Rigby P., Manzur M., Marti H.H. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature. 2008;453:410–414.
    1. Chi Sabins N., Taylor J.L., Fabian K.P., Appleman L.J., Maranchie J.K., Stolz D.B. DLK1: a novel target for immunotherapeutic remodeling of the tumor blood vasculature. Mol Ther. 2013;21:1958–1968.
    1. Garufi A., Pistritto G., Ceci C., Di Renzo L., Santarelli R., Faggioni A. Targeting COX-2/PGE(2) pathway in HIPK2 knockdown cancer cells: impact on dendritic cell maturation. PLoS ONE. 2012;7:e48342.
    1. Deng B., Zhu J.M., Wang Y., Liu T.T., Ding Y.B., Xiao W.M. Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-beta1 in gastric cancer. PLOS ONE. 2013;8:e63777.
    1. Lund A.W., Duraes F.V., Hirosue S., Raghavan V.R., Nembrini C., Thomas S.N. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 2012;1:191–199.
    1. Craig D.H., Schaubert K.L., Shiratsuchi H., Kan-Mitchell J., Basson M.D. Increased pressure stimulates aberrant dendritic cell maturation. Cell Mol Biol Lett. 2008;13:260–270.
    1. Baronzio G., Schwartz L., Kiselevsky M., Guais A., Sanders E., Milanesi G. Tumor interstitial fluid as modulator of cancer inflammation, thrombosis, immunity and angiogenesis. Anticancer Res. 2012;32:405–414.
    1. Preise D., Scherz A., Salomon Y. Antitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP) Photochem Photobiol Sci. 2011;10:681–688.
    1. Miyazaki K., Wakabayashi M., Hara Y., Ishida N. Tumor growth suppression in vivo by overexpression of the circadian component, PER2. Genes Cells. 2010;15:351–358.
    1. Hsiao Y.W., Li C.F., Chi J.Y., Tseng J.T., Chang Y., Hsu L.J. CCAAT/enhancer binding protein delta in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma. Sci Signal. 2013;6:ra59.
    1. Daurkin I., Eruslanov E., Stoffs T., Perrin G.Q., Algood C., Gilbert S.M. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 2011;71:6400–6409.
    1. Mace T.A., Ameen Z., Collins A., Wojcik S., Mair M., Young G.S. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 2013;73:3007–3018.
    1. Villalba M., Rathore M.G., Lopez-Royuela N., Krzywinska E., Garaude J., Allende-Vega N. From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol. 2013;45:106–113.
    1. Chirasani S.R., Leukel P., Gottfried E., Hochrein J., Stadler K., Neumann B. Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. Int J Cancer. 2013;132:843–853.
    1. Calcinotto A., Filipazzi P., Grioni M., Iero M., De Milito A., Ricupito A. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72:2746–2756.
    1. James S.E., Salsbury A.J. Effect of (plus or minus)-1,2-bis(3,5-dioxopiperazin-1-yl)propane on tumor blood vessels and its relationship to the antimetastatic effect in the Lewis lung carcinoma. Cancer Res. 1974;34:839–842.
    1. Lee S.L., Rouhi P., Dahl Jensen L., Zhang D., Ji H., Hauptmann G. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A. 2009;106:19485–19490.
    1. Cao Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer. 2005;5:735–743.
    1. Lunt S.J., Kalliomaki T.M., Brown A., Yang V.X., Milosevic M., Hill R.P. Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer. 2008;8:2.
    1. Rofstad E.K., Tunheim S.H., Mathiesen B., Graff B.A., Halsor E.F., Nilsen K. Pulmonary and lymph node metastasis is associated with primary tumor interstitial fluid pressure in human melanoma xenografts. Cancer Res. 2002;62:661–664.
    1. Yu T., Wang Z., Liu K., Wu Y., Fan J., Chen J. High interstitial fluid pressure promotes tumor progression through inducing lymphatic metastasis-related protein expressions in oral squamous cell carcinoma. Clin Transl Oncol. 2014;16:539–547.
    1. Rofstad E.K., Gaustad J.V., Egeland T.A., Mathiesen B., Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer. 2010;127:1535–1546.
    1. Oshima T., Takenoshita S., Akaike M., Kunisaki C., Fujii S., Nozaki A. Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol Rep. 2011;25:1439–1446.
    1. Wu M., Zeng J., Chen Y., Zeng Z., Zhang J., Cai Y. Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol Rep. 2012;27:1417–1428.
    1. Zhang Y., Tang H., Cai J., Zhang T., Guo J., Feng D. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 2011;303:47–55.
    1. Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–225.
    1. Rofstad E.K., Mathiesen B., Kindem K., Galappathi K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006;66:6699–6707.
    1. Peppicelli S., Bianchini F., Torre E., Calorini L. Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin Exp Metastasis. 2014;31(4):423–433.
    1. Huang Y., Yuan J., Righi E., Kamoun W.S., Ancukiewicz M., Nezivar J. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A. 2012;109:17561–17566.
    1. Mo J., Sun B., Zhao X., Gu Q., Dong X., Liu Z. Hypoxia-induced senescence contributes to the regulation of microenvironment in melanomas. Pathol Res Pract. 2013;209:640–647.
    1. Shin J.Y., Yoon I.H., Kim J.S., Kim B., Park C.G. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell Immunol. 2009;256:72–78.
    1. Aung K.Z., Pereira B.P., Tan P.H., Han H.C., Nathan S.S. Interstitial fluid pressure as an alternate regulator of angiogenesis independent of hypoxia driven HIF-1alpha in solid tumors. J Orthop Res. 2012;30:2038–2045.
    1. Mao L., Dauchy R.T., Blask D.E., Slakey L.M., Xiang S., Yuan L. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3beta. Mol Endocrinol. 2012;26:1808–1820.
    1. Kulbe H., Chakravarty P., Leinster D.A., Charles K.A., Kwong J., Thompson R.G. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72:66–75.
    1. Dayan D., Salo T., Salo S., Nyberg P., Nurmenniemi S., Costea D.E. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer. Cancer Med. 2012;1:128–140.
    1. Karagiannis G.S., Poutahidis T., Erdman S.E., Kirsch R., Riddell R.H., Diamandis E.P. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res. 2012;10:1403–1418.
    1. Estrella V., Chen T., Lloyd M., Wojtkowiak J., Cornnell H.H., Ibrahim-Hashim A. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73:1524–1535.
    1. Pratheeshkumar P., Kuttan G. Oleanolic acid induces apoptosis by modulating p53, Bax, Bcl-2 and caspase-3 gene expression and regulates the activation of transcription factors and cytokine profile in B16F. J Environ Pathol Toxicol Oncol. 2011;30:21–31.
    1. Roy S., Deep G., Agarwal C., Agarwal R. Silibinin prevents ultraviolet B radiation-induced epidermal damages in JB6 cells and mouse skin in a p53-GADD45alpha-dependent manner. Carcinogenesis. 2012;33:629–636.
    1. Thomas P., Wang Y.J., Zhong J.H., Kosaraju S., O’Callaghan N.J., Zhou X.F. Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer's disease. Mutat Res. 2009;661:25–34.
    1. Marden A., Walmsley R.M., Schweizer L.M., Schweizer M. Yeast-based assay for the measurement of positive and negative influences on microsatellite stability. FEMS Yeast Res. 2006;6:716–725.
    1. Lu L.Y., Ou N., Lu Q.B. Antioxidant induces DNA damage, cell death and mutagenecity in human lung and skin normal cells. Sci Rep. 2013;3:3169.
    1. Liu R., Fu A., Hoffman A.E., Zheng T., Zhu Y. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol. 2013;14:1.
    1. Denissova N.G., Nasello C.M., Yeung P.L., Tischfield J.A., Brenneman M.A. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage. Carcinogenesis. 2012;33:149–155.
    1. Mamede A.C., Abrantes A.M., Pedrosa L., Casalta-Lopes J.E., Pires A.S., Teixo R.J. Beyond the limits of oxygen: effects of hypoxia in a hormone-independent prostate cancer cell line. ISRN Oncol. 2013;2013:918207.
    1. Wu J., Dauchy R.T., Tirrell P.C., Wu S.S., Lynch D.T., Jitawatanarat P. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts. Cancer Res. 2011;71:2622–2631.
    1. Elshazley M., Sato M., Hase T., Yamashita R., Yoshida K., Toyokuni S. The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma. Int J Cancer. 2012;131:2820–2831.
    1. Ryder M., Gild M., Hohl T.M., Pamer E., Knauf J., Ghossein R. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLOS ONE. 2013;8:e54302.
    1. Gershon T.R., Crowther A.J., Tikunov A., Garcia I., Annis R., Yuan H. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab. 2013;1
    1. Onodera Y., Nam J.M., Bissell M.J. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest. 2014;124:367–384.
    1. Tyagi A., Singh R.P., Ramasamy K., Raina K., Redente E.F., Dwyer-Nield L.D. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila) 2009;2:74–83.
    1. Lin Y.G., Kunnumakkara A.B., Nair A., Merritt W.M., Han L.Y., Armaiz-Pena G.N. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 2007;13:3423–3430.
    1. Moghaddam S.J., Barta P., Mirabolfathinejad S.G., Ammar-Aouchiche Z., Garza N.T., Vo T.T. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis. 2009;30:1949–1956.
    1. Mineva N.D., Paulson K.E., Naber S.P., Yee A.S., Sonenshein G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLOS ONE. 2013;8:e73464.
    1. Surh Y.J., Chun K.S., Cha H.H., Han S.S., Keum Y.S., Park K.K. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480–481:243–268.
    1. Corsini E., Dell’Agli M., Facchi A., De Fabiani E., Lucchi L., Boraso M.S. Enterodiol and enterolactone modulate the immune response by acting on nuclear factor-kappaB (NF-kappaB) signaling. J Agric Food Chem. 2010;58:6678–6684.
    1. Jeong S.K., Yang K., Park Y.S., Choi Y.J., Oh S.J., Lee C.W. Interferon gamma induced by resveratrol analog, HS-1793, reverses the properties of tumor associated macrophages. Int Immunopharmacol. 2014;22:303–310.
    1. Salado C., Olaso E., Gallot N., Valcarcel M., Egilegor E., Mendoza L. Resveratrol prevents inflammation-dependent hepatic melanoma metastasis by inhibiting the secretion and effects of interleukin-18. J Transl Med. 2011;9:59.
    1. Jang M., Cai L., Udeani G.O., Slowing K.V., Thomas C.F., Beecher C.W. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–220.
    1. Wang X., Bai H., Zhang X., Liu J., Cao P., Liao N. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis. 2013;34:1323–1330.
    1. Tae N., Seo J., Min B.S., Ryoo S., Lee J.H. 3-Oxoolean-12-en-27-oic acid inhibits the proliferation of non-small cell lung carcinoma cells by inducing cell-cycle arrest at G0/G1 phase. Anticancer Res. 2011;31:2179–2185.
    1. Jiang H.L., Jin J.Z., Wu D., Xu D., Lin G.F., Yu H. Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo. Mol Biol Rep. 2013;40:4203–4209.
    1. Wang W.B., Feng L.X., Yue Q.X., Wu W.Y., Guan S.H., Jiang B.H. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol. 2012;227:2196–2206.
    1. Ge P., Ji X., Ding Y., Wang X., Fu S., Meng F. Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010;32:94–100.
    1. Tyagi A., Agarwal C., Agarwal R. Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention. Mol Cancer Ther. 2002;1:525–532.
    1. Tyagi A., Agarwal C., Harrison G., Glode L.M., Agarwal R. Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI-CDK-cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis. 2004;25:1711–1720.
    1. Kaur M., Velmurugan B., Tyagi A., Deep G., Katiyar S., Agarwal C. Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Mol Cancer Ther. 2009;8:2366–2374.
    1. Agarwal C., Singh R.P., Dhanalakshmi S., Tyagi A.K., Tecklenburg M., Sclafani R.A. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene. 2003;22:8271–8282.
    1. Kang N., Wang M.M., Wang Y.H., Zhang Z.N., Cao H.R., Lv Y.H. Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem Toxicol. 2014;67:193–200.
    1. Lim T.G., Lee S.Y., Huang Z., Lim do Y., Chen H., Jung S.K. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev Res (Phila) 2014;7:466–474.
    1. Guo H., Xu Y.M., Ye Z.Q., Yu J.H., Hu X.Y. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Pharmazie. 2013;68:431–434.
    1. Mukhopadhyay A., Banerjee S., Stafford L.J., Xia C., Liu M., Aggarwal B.B. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene. 2002;21:8852–8861.
    1. Ahmad N., Adhami V.M., Gupta S., Cheng P., Mukhtar H. Role of the retinoblastoma (pRb)-E2F/DP pathway in cancer chemopreventive effects of green tea polyphenol epigallocatechin-3-gallate. Arch Biochem Biophys. 2002;398:125–131.
    1. Huh S.W., Bae S.M., Kim Y.W., Lee J.M., Namkoong S.E., Lee I.P. Anticancer effects of (−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol. 2004;94:760–768.
    1. Saldanha S.N., Kala R., Tollefsbol T.O. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res. 2014;324:40–53.
    1. Shen X., Zhang Y., Feng Y., Zhang L., Li J., Xie Y.A. Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int J Oncol. 2014;44:791–796.
    1. Huang W.W., Tsai S.C., Peng S.F., Lin M.W., Chiang J.H., Chiu Y.J. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol. 2013;42:2069–2077.
    1. Xu W., Liu J., Li C., Wu H.Z., Liu Y.W. Kaempferol-7-O-beta-d-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett. 2008;264:229–240.
    1. Choi E.J., Ahn W.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr Res Pract. 2008;2:322–325.
    1. Casagrande F., Darbon J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol. 2001;61:1205–1215.
    1. Hill S.M., Blask D.E., Xiang S., Yuan L., Mao L., Dauchy R.T. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia. 2011;16:235–245.
    1. McCann M.J., Gill C.I., Linton T., Berrar D., McGlynn H., Rowland I.R. Enterolactone restricts the proliferation of the LNCaP human prostate cancer cell line in vitro. Mol Nutr Food Res. 2008;52:567–580.
    1. Stan S.D., Zeng Y., Singh S.V. Ayurvedic medicine constituent withaferin A causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer. 2008;60(Suppl. 1):51–60.
    1. Roy R.V., Suman S., Das T.P., Luevano J.E., Damodaran C. Withaferin A, a steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells. J Nat Prod. 2013;76:1909–1915.
    1. Grogan P.T., Sleder K.D., Samadi A.K., Zhang H., Timmermann B.N., Cohen M.S. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs. 2013;31:545–557.
    1. Adhami V.M., Afaq F., Ahmad N. Involvement of the retinoblastoma (pRb)-E2F/DP pathway during antiproliferative effects of resveratrol in human epidermoid carcinoma (A431) cells. Biochem Biophys Res Commun. 2001;288:579–585.
    1. Wolter F., Akoglu B., Clausnitzer A., Stein J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J Nutr. 2001;131:2197–2203.
    1. Kim A.L., Zhu Y., Zhu H., Han L., Kopelovich L., Bickers D.R. Resveratrol inhibits proliferation of human epidermoid carcinoma A431 cells by modulating MEK1 and AP-1 signalling pathways. Exp Dermatol. 2006;15:538–546.
    1. Yang Q., Wang B., Zang W., Wang X., Liu Z., Li W. Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLOS ONE. 2013;8:e70627.
    1. Tang S., Gao D., Zhao T., Zhou J., Zhao X. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes. Nanotechnology. 2013;24:235102.
    1. Li W., Ding Y., Sun Y.N., Yan X.T., Yang S.Y., Choi C.W. Oleanane-type triterpenoid saponins from the roots of Pulsatilla koreana and their apoptosis-inducing effects on HL-60 human promyelocytic leukemia cells. Arch Pharm Res. 2013;36:768–774.
    1. Dizaji M.Z., Malehmir M., Ghavamzadeh A., Alimoghaddam K., Ghaffari S.H. Synergistic effects of arsenic trioxide and silibinin on apoptosis and invasion in human glioblastoma U87MG cell line. Neurochem Res. 2012;37:370–380.
    1. Fang H.Y., Chen S.B., Guo D.J., Pan S.Y., Yu Z.L. Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells. Phytomedicine. 2011;18:697–703.
    1. Lee W.Y., Chen Y.C., Shih C.M., Lin C.M., Cheng C.H., Chen K.C. The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol Appl Pharmacol. 2014;274:55–62.
    1. Martin S., Lamb H.K., Brady C., Lefkove B., Bonner M.Y., Thompson P. Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br J Cancer. 2013;109:433–443.
    1. Song W., Dang Q., Xu D., Chen Y., Zhu G., Wu K. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol Rep. 2014;31:1350–1356.
    1. Kim C.H., Yoo Y.M. Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol. 2010;14:365–369.
    1. Danbara N., Yuri T., Tsujita-Kyutoku M., Tsukamoto R., Uehara N., Tsubura A. Enterolactone induces apoptosis and inhibits growth of Colo 201 human colon cancer cells both in vitro and in vivo. Anticancer Res. 2005;25:2269–2276.
    1. Hahm E.R., Lee J., Singh S.V. Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Mol Carcinog. 2013;53(11):907–916.
    1. Wesolowska O., Wisniewski J., Bielawska-Pohl A., Paprocka M., Duarte N., Ferreira M.J. Stilbenes as multidrug resistance modulators and apoptosis inducers in human adenocarcinoma cells. Anticancer Res. 2010;30:4587–4593.
    1. Deeb D., Gao X., Liu Y., Kim S.H., Pindolia K.R., Arbab A.S. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity. Biochem Biophys Res Commun. 2012;422:561–567.
    1. Deeb D., Gao X., Liu Y., Varma N.R., Arbab A.S., Gautam S.C. Inhibition of telomerase activity by oleanane triterpenoid CDDO-Me in pancreatic cancer cells is ROS-dependent. Molecules. 2013;18:3250–3265.
    1. Nasiri M., Zarghami N., Koshki K.N., Mollazadeh M., Moghaddam M.P., Yamchi M.R. Curcumin and silibinin inhibit telomerase expression in T47D human breast cancer cells. Asian Pac J Cancer Prev. 2013;14:3449–3453.
    1. Ebrahimnezhad Z., Zarghami N., Keyhani M., Amirsaadat S., Akbarzadeh A., Rahmati M. Inhibition of hTERT gene expression by silibinin-loaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line. Bioimpacts. 2013;3:67–74.
    1. Thelen P., Wuttke W., Jarry H., Grzmil M., Ringert R.H. Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. J Urol. 2004;171:1934–1938.
    1. Khaw A.K., Hande M.P., Kalthur G. Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J Cell Biochem. 2013;114:1257–1270.
    1. Wang X., Hao M.W., Dong K., Lin F., Ren J.H., Zhang H.Z. Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch Pharm Res. 2009;32:1263–1269.
    1. Sadava D., Whitlock E., Kane S.E. The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun. 2007;360:233–237.
    1. Berletch J.B., Liu C., Love W.K., Andrews L.G., Katiyar S.K., Tollefsbol T.O. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem. 2008;103:509–519.
    1. Martinez-Campa C.M., Alonso-Gonzalez C., Mediavilla M.D., Cos S., Gonzalez A., Sanchez-Barcelo E.J. Melatonin down-regulates hTERT expression induced by either natural estrogens (17beta-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells. Cancer Lett. 2008;268:272–277.
    1. Lanzilli G., Fuggetta M.P., Tricarico M., Cottarelli A., Serafino A., Falchetti R. Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int J Oncol. 2006;28:641–648.
    1. Liu J., Wu N., Ma L., Liu M., Liu G., Zhang Y. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLOS ONE. 2014;9:e91606.
    1. Raina K., Agarwal C., Wadhwa R., Serkova N.J., Agarwal R. Energy deprivation by silibinin in colorectal cancer cells: a double-edged sword targeting both apoptotic and autophagic machineries. Autophagy. 2013;9:697–713.
    1. Yousefi M., Ghaffari S.H., Soltani B.M., Nafissi S., Momeny M., Zekri A. Therapeutic efficacy of silibinin on human neuroblastoma cells: Akt and NF-kappaB expressions may play an important role in silibinin-induced response. Neurochem Res. 2012;37:2053–2063.
    1. Vaughan R.A., Garcia-Smith R., Dorsey J., Griffith J.K., Bisoffi M., Trujillo K.A. Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer. 2013;133:2504–2510.
    1. Moreira L., Araujo I., Costa T., Correia-Branco A., Faria A., Martel F. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp Cell Res. 2013;319:1784–1795.
    1. Valenti D., de Bari L., Manente G.A., Rossi L., Mutti L., Moro L. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochim Biophys Acta. 2013;1832:2085–2096.
    1. Huang C.H., Tsai S.J., Wang Y.J., Pan M.H., Kao J.Y., Way T.D. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 2009;53:1156–1165.
    1. Filomeni G., Desideri E., Cardaci S., Graziani I., Piccirillo S., Rotilio G. Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy. 2010;6:202–216.
    1. Thors L., Belghiti M., Fowler C.J. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. Br J Pharmacol. 2008;155:244–252.
    1. Wang B.Q., Yang Q.H., Xu R.K., Xu J.N. Elevated levels of mitochonrial respiratory complexes activities and ATP production in 17-beta-estradiol-induced prolactin-secretory tumor cells in male rats are inhibited by melatonin in vivo and in vitro. Chin Med J (Engl) 2013;126:4724–4730.
    1. Sanchez-Sanchez A.M., Martin V., Garcia-Santos G., Rodriguez-Blanco J., Casado-Zapico S., Suarez-Garnacho S. Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells. Free Radic Res. 2011;45:1333–1341.
    1. Gonzalez A., del Castillo-Vaquero A., Miro-Moran A., Tapia J.A., Salido G.M. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res. 2011;50:250–260.
    1. Hahm E.R., Lee J., Kim S.H., Sehrawat A., Arlotti J.A., Shiva S.S. Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. J Natl Cancer Inst. 2013;105:1111–1122.
    1. Hahm E.R., Moura M.B., Kelley E.E., Van Houten B., Shiva S., Singh S.V. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS ONE. 2011;6:e23354.
    1. Malik F., Kumar A., Bhushan S., Khan S., Bhatia A., Suri K.A. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis. 2007;12:2115–2133.
    1. Gomez L.S., Zancan P., Marcondes M.C., Ramos-Santos L., Meyer-Fernandes J.R., Sola-Penna M. Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie. 2013;95:1336–1343.
    1. Fouad M.A., Agha A.M., Merzabani M.M., Shouman S.A. Resveratrol inhibits proliferation, angiogenesis and induces apoptosis in colon cancer cells: calorie restriction is the force to the cytotoxicity. Hum Exp Toxicol. 2013;32:1067–1080.
    1. Filomeni G., Graziani I., Rotilio G., Ciriolo M.R. trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr. 2007;2:295–305.
    1. Nagaraj S., Youn J.I., Weber H., Iclozan C., Lu L., Cotter M.J. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2010;16:1812–1823.
    1. Deng W., Sun H.X., Chen F.Y., Yao M.L. Immunomodulatory activity of 3beta, 6beta-dihydroxyolean-12-en-27-oic acid in tumor-bearing mice. Chem Biodivers. 2009;6:1243–1253.
    1. Forghani P., Khorramizadeh M.R., Waller E.K. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med. 2014;3:215–224.
    1. Bhattacharyya S., Md Sakib Hossain D., Mohanty S., Sankar Sen G., Chattopadhyay S., Banerjee S. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol. 2010;7:306–315.
    1. Meeran S.M., Mantena S.K., Katiyar S.K. Prevention of ultraviolet radiation-induced immunosuppression by (−)-epigallocatechin-3-gallate in mice is mediated through interleukin 12-dependent DNA repair. Clin Cancer Res. 2006;12:2272–2280.
    1. Jang J.Y., Lee J.K., Jeon Y.K., Kim C.W. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer. 2013;13:421.
    1. Lissoni P., Ardizzoia A., Barni S., Tancini G., Muttini M. Immunotherapy with subcutaneous low dose interleukin-2 plus melatonin as salvage therapy of heavily chemotherapy-pretreated ovarian cancer. Oncol Rep. 1996;3:947–949.
    1. Sinha P., Ostrand-Rosenberg S. Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunol Immunother. 2013;62:1663–1673.
    1. Hushmendy S., Jayakumar L., Hahn A.B., Bhoiwala D., Bhoiwala D.L., Crawford D.R. Select phytochemicals suppress human T-lymphocytes and mouse splenocytes suggesting their use in autoimmunity and transplantation. Nutr Res. 2009;29:568–578.
    1. Wang B., Sun J., Li X., Zhou Q., Bai J., Shi Y. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity. Nutr Res. 2013;33:971–981.
    1. Yang Y., Paik J.H., Cho D., Cho J.A., Kim C.W. Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory T cells. Int Immunopharmacol. 2008;8:542–547.
    1. Deeb D., Gao X., Liu Y., Jiang D., Divine G.W., Arbab A.S. Synthetic triterpenoid CDDO prevents the progression and metastasis of prostate cancer in TRAMP mice by inhibiting survival signaling. Carcinogenesis. 2011;32:757–764.
    1. Guo G., Yao W., Zhang Q., Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLOS ONE. 2013;8:e72079.
    1. Huang L., Zhang Z., Zhang S., Ren J., Zhang R., Zeng H. Inhibitory action of Celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1alpha pathway. Int J Mol Med. 2011;27:407–415.
    1. Singh R.P., Raina K., Sharma G., Agarwal R. Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res. 2008;14:7773–7780.
    1. Yang C.L., Liu Y.Y., Ma Y.G., Xue Y.X., Liu D.G., Ren Y. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS ONE. 2012;7:e37960.
    1. Maruyama T., Murata S., Nakayama K., Sano N., Ogawa K., Nowatari T. (−)-Epigallocatechin-3-gallate suppresses liver metastasis of human colorectal cancer. Oncol Rep. 2014;31:625–633.
    1. Sharma C., Nusri Qel A., Begum S., Javed E., Rizvi T.A., Hussain A. (−)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev. 2012;13:4815–4822.
    1. Park J.H., Yoon J.H., Kim S.A., Ahn S.G. (−)-Epigallocatechin-3-gallate inhibits invasion and migration of salivary gland adenocarcinoma cells. Oncol Rep. 2010;23:585–590.
    1. Astin J.W., Jamieson S.M., Eng T.C., Flores M.V., Misa J.P., Chien A. An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol Cancer Ther. 2014;13:2450–2462.
    1. Chen H.J., Lin C.M., Lee C.Y., Shih N.C., Peng S.F., Tsuzuki M. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol Rep. 2013;30:925–932.
    1. Rapozzi V., Perissin L., Zorzet S., Giraldi T. Effects of melatonin administration on tumor spread in mice bearing Lewis lung carcinoma. Pharmacol Res. 1992;25(Suppl. 1):71–72.
    1. Cos S., Fernandez R., Guezmes A., Sanchez-Barcelo E.J. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res. 1998;58:4383–4390.
    1. Miura D., Saarinen N.M., Miura Y., Santti R., Yagasaki K. Hydroxymatairesinol and its mammalian metabolite enterolactone reduce the growth and metastasis of subcutaneous AH109A hepatomas in rats. Nutr Cancer. 2007;58:49–59.
    1. Thaiparambil J.T., Bender L., Ganesh T., Kline E., Patel P., Liu Y. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer. 2011;129:2744–2755.
    1. Ji Q., Liu X., Fu X., Zhang L., Sui H., Zhou L. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/beta-catenin signal pathway. PLOS ONE. 2013;8:e78700.
    1. Sheth S., Jajoo S., Kaur T., Mukherjea D., Sheehan K., Rybak L.P. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS ONE. 2012;7:e51655.
    1. Yeh C.B., Hsieh M.J., Lin C.W., Chiou H.L., Lin P.Y., Chen T.Y. The antimetastatic effects of resveratrol on hepatocellular carcinoma through the downregulation of a metastasis-associated protease by SP-1 modulation. PLOS ONE. 2013;8:e56661.
    1. Wu P.K., Chi Shing Tai W., Liang Z.T., Zhao Z.Z., Hsiao W.L. Oleanolic acid isolated from Oldenlandia diffusa exhibits a unique growth inhibitory effect against ras-transformed fibroblasts. Life Sci. 2009;85:113–121.
    1. Ni H., Zhao W., Kong X., Li H., Ouyang J. Celastrol inhibits lipopolysaccharide-induced angiogenesis by suppressing TLR4-triggered nuclear factor-kappa B activation. Acta Haematol. 2014;131:102–111.
    1. Xu P., Yin Q., Shen J., Chen L., Yu H., Zhang Z. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm. 2013;454:21–30.
    1. Xu Y., Zhang J., Han J., Pan X., Cao Y., Guo H. Curcumin inhibits tumor proliferation induced by neutrophil elastase through the upregulation of alpha1-antitrypsin in lung cancer. Mol Oncol. 2012;6:405–417.
    1. Zgheib A., Lamy S., Annabi B. Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J Biol Chem. 2013;288:13378–13386.
    1. Luo H., Jiang B.H., King S.M., Chen Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr Cancer. 2008;60:800–809.
    1. Bandyopadhyay S., Romero J.R., Chattopadhyay N. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Mol Cell Endocrinol. 2008;287:57–64.
    1. Alvarez-Garcia V., Gonzalez A., Alonso-Gonzalez C., Martinez-Campa C., Cos S. Antiangiogenic effects of melatonin in endothelial cell cultures. Microvasc Res. 2013;87:25–33.
    1. Szarc vel Szic K., Op de Beeck K., Ratman D., Wouters A., Beck I.M., Declerck K. Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLOS ONE. 2014;9:e87850.
    1. Shamim U., Hanif S., Albanyan A., Beck F.W., Bao B., Wang Z. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol. 2012;227:1493–1500.

Source: PubMed

3
Iratkozz fel