Clinical review: Circulatory shock--an update: a tribute to Professor Max Harry Weil

Jean-Louis Vincent, Can Ince, Jan Bakker, Jean-Louis Vincent, Can Ince, Jan Bakker

Abstract

Circulatory shock is common and associated with high morbidity and mortality. Appropriate shock treatment relies on a good understanding of the pathophysiological mechanisms underlying shock. In this article, we provide an update on the description, classification, and management of shock states built on foundations laid by Dr Max Harry Weil, a key early contributor to this field.

Figures

Figure 1
Figure 1
The importance of blood lactate concentrations in determining the presence of shock.
Figure 2
Figure 2
The three 'windows' on shock.
Figure 3
Figure 3
The triangular basis of circulatory shock. The full clinical picture includes the three features of hypotension, altered tissue perfusion and hyperlactatemia, whereas the underlying microcirculatory disturbances are less apparent. However, the systemic presentation is not always complete.
Figure 4
Figure 4
The four types of acute circulatory failure according to Weil and Shubin. Reproduced from [19], with permission.

References

    1. LeDran HF. Traité ou Reflexions Tirées de la Pratique sur les Playes d'Armes à Feu. Paris: Charles Osmont; 1737.
    1. LeDran HF. A Treatise, or Reflections, Drawn from Practice on Gun-shot Wounds. London; 1743.
    1. Millham FH. A brief history of shock. Surgery. 2010;16:1026–1037. doi: 10.1016/j.surg.2010.02.014.
    1. Guthrie GJ. Treatise on gunshot wounds. London: Burgess and Hill; 1827.
    1. Vincent JL. Obituary: Dr Max Harry Weil. Crit Care. 2011;16:192. doi: 10.1186/cc10347.
    1. Weil MH, Henning RJ. New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky Memorial Lecture. Anesth Analg. 1979;16:124–132.
    1. Broder G, Weil MH. Excess lactate: An index of reversibility of shock in human patients. Science. 1964;16:1457–1459. doi: 10.1126/science.143.3613.1457.
    1. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock) Circulation. 1970;16:989–1001. doi: 10.1161/01.CIR.41.6.989.
    1. Nichol AD, Egi M, Pettila V, Bellomo R, French C, Hart G, Davies A, Stachowski E, Reade MC, Bailey M, Cooper DJ. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010;16:R25. doi: 10.1186/cc8888.
    1. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;16:449–451. doi: 10.1097/00003246-198306000-00012.
    1. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;16:956–962. doi: 10.1378/chest.99.4.956.
    1. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;16:221–226. doi: 10.1016/S0002-9610(97)89552-9.
    1. Lima A, Jansen TC, van Bommel J, Ince C, Bakker J. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med. 2009;16:934–938. doi: 10.1097/CCM.0b013e31819869db.
    1. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;16:1395–1396. doi: 10.1016/S0140-6736(02)11393-6.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;16:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. Boerma EC, van d, Spronk PE, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med. 2007;16:1055–1060. doi: 10.1097/01.CCM.0000259527.89927.F9.
    1. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;16:88–98. doi: 10.1016/j.annemergmed.2006.08.021. 98.
    1. Trzeciak S, McCoy JV, Phillip DR, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multiorgan failure at 24 h in patients with sepsis. Intensive Care Med. 2008;16:2210–2217. doi: 10.1007/s00134-008-1193-6.
    1. Weil MH, Shubin H. Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol. 1971;16:13–23.
    1. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;16:91–99. doi: 10.1016/j.ahj.2003.07.006.
    1. Goldman D, Bateman RM, Ellis CG. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol. 2006;16:H2277–H2285. doi: 10.1152/ajpheart.00547.2005.
    1. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;16:S229–S234. doi: 10.1097/00003246-200205001-00010.
    1. Reggiori G, Occhipinti G, De Gasperi A, Vincent JL, Piagnerelli M. Early alterations of red blood cell rheology in critically ill patients. Crit Care Med. 2009;16:3041–3046. doi: 10.1097/CCM.0b013e3181b02b3f.
    1. Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol. 2009;16:155–162. doi: 10.1097/ACO.0b013e328328d1b6.
    1. van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;16:592–594. doi: 10.1161/01.RES.0000065917.53950.75.
    1. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med. 1999;16:1369–1377. doi: 10.1097/00003246-199907000-00031.
    1. Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;16:S441–S448. doi: 10.1097/01.CCM.0000278049.48333.78.
    1. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;16:1209–1212. doi: 10.1038/13529.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;16:98–104. doi: 10.1164/rccm.200109-016OC.
    1. Weil MH, Shubin H. The "VIP" approach to the bedside management of shock. JAMA. 1969;16:337–340. doi: 10.1001/jama.1969.03150150049010.
    1. Kilgannon JH, Jones AE, Shapiro NI, Angelos MG, Milcarek B, Hunter K, Parrillo JE, Trzeciak S. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;16:2165–2171. doi: 10.1001/jama.2010.707.
    1. da Luz PL, Weil MH, Liu VY, Shubin H. Plasma volume prior to and following volume loading during shock complicating acute myocardial infarction. Circulation. 1974;16:98–105. doi: 10.1161/01.CIR.49.1.98.
    1. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;16:64–68. doi: 10.1097/01.CCM.0000249851.94101.4F.
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;16:2642–2647. doi: 10.1097/CCM.0b013e3181a590da.
    1. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;16:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;16:86–96.
    1. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Soe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjaeldgaard AL, Fabritius ML, Mondrup F, Pott FC, Moller TP, Winkel P, Wetterslev J. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;16:124–134. doi: 10.1056/NEJMoa1204242.
    1. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;16:779–789. doi: 10.1056/NEJMoa0907118.
    1. De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: A meta-analysis. Crit Care Med. 2012;16:725–730. doi: 10.1097/CCM.0b013e31823778ee.

Source: PubMed

3
Iratkozz fel