Attenuation of Splanchnic Autotransfusion Following Noninvasive Ultrasound Renal Denervation: A Novel Marker of Procedural Success

Manish Saxena, Tariq Shour, Mussadiq Shah, Christopher B Wolff, Peter O O Julu, Vikas Kapil, David J Collier, Fu Liang Ng, Ajay Gupta, Armida Balawon, Jane Pheby, Anne Zak, Gurvinder Rull, Benjamin O'Brien, Roland E Schmieder, Melvin D Lobo, Manish Saxena, Tariq Shour, Mussadiq Shah, Christopher B Wolff, Peter O O Julu, Vikas Kapil, David J Collier, Fu Liang Ng, Ajay Gupta, Armida Balawon, Jane Pheby, Anne Zak, Gurvinder Rull, Benjamin O'Brien, Roland E Schmieder, Melvin D Lobo

Abstract

Background: Renal denervation has no validated marker of procedural success. We hypothesized that successful renal denervation would reduce renal sympathetic nerve signaling demonstrated by attenuation of α-1-adrenoceptor-mediated autotransfusion during the Valsalva maneuver.

Methods and results: In this substudy of the Wave IV Study: Phase II Randomized Sham Controlled Study of Renal Denervation for Subjects With Uncontrolled Hypertension, we enrolled 23 subjects with resistant hypertension. They were randomized either to bilateral renal denervation using therapeutic levels of ultrasound energy (n=12) or sham application of diagnostic ultrasound (n=11). Within-group changes in autonomic parameters, office and ambulatory blood pressure were compared between baseline and 6 months in a double-blind manner. There was significant office blood pressure reduction in both treatment (16.1±27.3 mm Hg, P<0.05) and sham groups (27.9±15.0 mm Hg, P<0.01) because of which the study was discontinued prematurely. However, during the late phase II (Iii) of Valsalva maneuver, renal denervation resulted in substantial and significant reduction in mean arterial pressure (21.8±25.2 mm Hg, P<0.05) with no significant changes in the sham group. Moreover, there were significant reductions in heart rate in the actively treated group at rest (6.0±11.5 beats per minute, P<0.05) and during postural changes (supine 7.2±8.4 beats per minute, P<0.05, sit up 12.7±16.7 beats per minute, P<0.05), which were not observed in the sham group.

Conclusions: Blood pressure reduction per se is not necessarily a marker of successful renal nerve ablation. Reduction in splanchnic autotransfusion following renal denervation has not been previously demonstrated and denotes attenuation of (renal) sympathetic efferent activity and could serve as a marker of procedural success.

Clinical trial registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02029885.

Keywords: Valsalva maneuver; autonomic function; blood pressure; hypertension; renal denervation; sympathetic nervous system; ultrasound.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

References

    1. Lobo MD, Sobotka PA, Pathak A. Interventional procedures and future drug therapy for hypertension. Eur Heart J. 2017;38:1101–1111.
    1. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, de Leeuw PW, Sica DA. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double‐blind, randomized, placebo‐controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–773.
    1. Esler MD, Sobotka PA, Schlaich MP, Krum H, Schmieder RE, Böhm M; Symplicity HTN‐2 Investigators . Renal sympathetic denervation for treatment of drug‐resistant hypertension: one‐year results from the symplicity HTN‐2 randomized, controlled trial. Circulation. 2012;126:2976–2982.
    1. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter‐based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof‐of‐principle cohort study. Lancet. 2009;373:1275–1281.
    1. Lobo MD, Sobotka PA, Stanton A, Cockcroft JR, Sulke N, Dolan E, van der Giet M, Hoyer J, Furniss SS, Foran JP, Witkowski A, Januszewicz A, Schoors D, Tsioufis K, Rensing BJ, Scott B, Ng GA, Ott C, Schmieder RE; ROX CONTROL HTN Investigators . Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet. 2015;385:1634–1641.
    1. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Philipp T, de Leeuw PW. Novel baroreflex activation therapy in resistant hypertension: results of a European multi‐center feasibility study. J Am Coll Cardiol. 2010;56:1254–1258.
    1. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic‐nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–934.
    1. Allen TR. Current status of lumbar sympathectomy. Am Surg. 1976;42:89–91.
    1. DiBona GF. Neural control of the kidney: past, present, and future. Hypertension. 2003;41:621–624.
    1. Mahfoud F, Bhatt DL. Catheter‐based renal denervation: the black box procedure. JACC Cardiovasc Interv. 2013;6:1092–1094.
    1. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, Kolodgie FD, Virmani R, Joner M. Anatomic assessment of sympathetic peri‐arterial renal nerves in man. J Am Coll Cardiol. 2014;64:635–643.
    1. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, Anderson W, Lambert G. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.
    1. Hering D, Lambert EA, Marusic P, Walton AS. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–464.
    1. Vink EE, Verloop WL, Siddiqi L, van Schelven LJ, Liam Oey P, Blankestijn PJ. The effect of percutaneous renal denervation on muscle sympathetic nerve activity in hypertensive patients. Int J Cardiol. 2014;176:8–12.
    1. de Jong MR, Adiyaman A, Gal P, Smit JJ, Delnoy PP, Heeg JE, van Hasselt BA, Lau EO, Persu A, Staessen JA, Ramdat Misier AR, Steinberg JS, Elvan A. Renal nerve stimulation‐induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68:707–714.
    1. Greenway CV, Lister GE. Capacitance effects and blood reservoir function in the splanchnic vascular bed during non‐hypotensive haemorrhage and blood volume expansion in anaesthetized cats. J Physiol. 1974;237:279–294.
    1. Schmieder RE, Ott C, Toennes SW, Bramlage P, Gertner M, Dawood O, Baumgart P, O'Brien B, Dasgupta I, Nickenig G, Ormiston J, Saxena M, Sharp ASP, Sievert H, Spinar J, Starek Z, Weil J, Wenzel U, Witkowski A, Lobo MD. Phase ii randomized sham‐controlled study of renal denervation for individuals with uncontrolled hypertension—WAVE IV. J Hypertens. 2018;36:680–689.
    1. Bogert LW, van Lieshout JJ. Non‐invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol. 2005;90:437–446.
    1. Tsioufis C, Papademetriou V, Tsiachris D, Dimitriadis K, Kasiakogias A, Kordalis A, Antonakis V, Kefala A, Thomopoulos C, Kallikazaros I, Lau EO, Stefanadis C. Drug‐resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hypertens. 2014;28:587–593.
    1. Zuern CS, Eick C, Rizas KD, Bauer S, Langer H, Gawaz M, Bauer A. Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2013;62:2124–2130.
    1. Nishimura RA, Tajik AJ. The Valsalva maneuver and response revisited. Mayo Clin Proc. 1986;61:211–217.
    1. Goldstein DS, Holmes C, Li ST, Bruce S, Metman LV, Cannon RO III. Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med. 2000;133:338–347.
    1. Sandroni P, Benarroch EE, Low PA. Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol. 1991;71:1563–1567.
    1. Risoe C, Tan W, Smiseth OA. Effect of carotid sinus baroreceptor reflex on hepatic and splenic vascular capacitance in vagotomized dogs. Am J Physiol. 1994;266:H1528–H1533.
    1. Zucker IH, Gorman AJ, Cornish KG, Lang M. Imparied atrial receptor modulation or renal nerve activity in dogs with chronic volume overload. Cardiovasc Res. 1985;19:411–418.
    1. Fritsch‐Yelle JM, Convertino VA, Schlegel TT. Acute manipulations of plasma volume alter arterial pressure responses during valsalva maneuvers. J Appl Physiol. 1999;86:1852–1857.
    1. Sun MK, Guyenet PG. Medullospinal sympathoexcitatory neurons in normotensive and spontaneously hypertensive rats. Am J Physiol. 1986;250:R910–R917.
    1. Halliwill JR. Segregated signal averaging of sympathetic baroreflex responses in humans. J Appl Physiol. 2000;88:767–773.
    1. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha‐Singh K, Townsend RR, Bakris GL; SYMPLICITY HTN‐3 Investigators . A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–1401.
    1. Mahfoud F, Schmieder RE, Azizi M, Pathak A, Sievert H, Tsioufis C, Zeller T, Bertog S, Blankestijn PJ, Bohm M, Burnier M, Chatellier G, Durand Zaleski I, Ewen S, Grassi G, Joner M, Kjeldsen SE, Lobo MD, Lotan C, Luscher TF, Parati G, Rossignol P, Ruilope L, Sharif F, van Leeuwen E, Volpe M, Windecker S, Witkowski A, Wijns W. Proceedings from the 2nd European Clinical Consensus Conference for device‐based therapies for hypertension: state of the art and considerations for the future. Eur Heart J. 2017;38:3272–3281.
    1. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, Watkinson AF, Schmieder RE, Schmid A, Choi JW, East C, Walton A, Hopper I, Cohen DL, Wilensky R, Lee DP, Ma A, Devireddy CM, Lea JP, Lurz PC, Fengler K, Davies J, Chapman N, Cohen SA, DeBruin V, Fahy M, Jones DE, Rothman M, Bohm M; SPYRAL HTN‐OFF MED trial investigators . Catheter‐based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN‐OFF MED): a randomised, sham‐controlled, proof‐of‐concept trial. Lancet. 2017;390:2160–2170.

Source: PubMed

3
Iratkozz fel