NSABP FB-7: a phase II randomized neoadjuvant trial with paclitaxel + trastuzumab and/or neratinib followed by chemotherapy and postoperative trastuzumab in HER2+ breast cancer

Samuel A Jacobs, André Robidoux, Jame Abraham, José Manuel Pérez-Garcia, Nicla La Verde, James M Orcutt, Marina E Cazzaniga, Fanny Piette, Silvia Antolín, Elena Aguirre, Javier Cortes, Antonio Llombart-Cussac, Serena Di Cosimo, Rim S Kim, Huichen Feng, Corey Lipchik, Peter C Lucas, Ashok Srinivasan, Ying Wang, Nan Song, Patrick G Gavin, April D Balousek, Soonmyung Paik, Carmen J Allegra, Norman Wolmark, Katherine L Pogue-Geile, Samuel A Jacobs, André Robidoux, Jame Abraham, José Manuel Pérez-Garcia, Nicla La Verde, James M Orcutt, Marina E Cazzaniga, Fanny Piette, Silvia Antolín, Elena Aguirre, Javier Cortes, Antonio Llombart-Cussac, Serena Di Cosimo, Rim S Kim, Huichen Feng, Corey Lipchik, Peter C Lucas, Ashok Srinivasan, Ying Wang, Nan Song, Patrick G Gavin, April D Balousek, Soonmyung Paik, Carmen J Allegra, Norman Wolmark, Katherine L Pogue-Geile

Abstract

Purpose: The primary aim of NSABP FB-7 was to determine the pathologic complete response (pCR) rate in locally advanced HER2-positive (HER2+) breast cancer patients treated with neoadjuvant trastuzumab or neratinib or the combination and weekly paclitaxel followed by standard doxorubicin plus cyclophosphamide. The secondary aims include biomarker analyses.

Experimental design: pCR was tested for association with treatment, gene expression, and a single nucleotide polymorphism (SNP) in the Fc fragment of the IgG receptor IIIa-158V/F (FCGR3A). Pre-treatment biopsies and residual tumors were also compared to identify molecular changes.

Results: The numerical pCR rate in the trastuzumab plus neratinib arm (50% [95%CI 34-66%]) was greater than that for single-targeted therapies with trastuzumab (38% [95%CI 24-54]) or neratinib (33% [95%CI 20-50]) in the overall cohort but was not statistically significant. Hormone receptor-negative (HR-) tumors had a higher pCR rate than HR+ tumors in all three treatment arms, with the highest pCR rate in the combination arm. Diarrhea was the most frequent adverse event and occurred in virtually all patients who received neratinib-based therapy. Grade 3 diarrhea was reported in 31% of patients; there were no grade 4 events. Our 8-gene signature, previously validated for trastuzumab benefit in two different clinical trials in the adjuvant setting, was correlated with pCR across all arms of NSABP FB-7. Specifically, patients predicted to receive no trastuzumab benefit had a significantly lower pCR rate than did patients predicted to receive the most benefit (P = 0.03). FCGR genotyping showed that patients who were homozygous for the Fc low-binding phenylalanine (F) allele for FCGR3A-158V/F were less likely to achieve pCR.

Conclusions: Combining trastuzumab plus neratinib with paclitaxel increased the absolute pCR rate in the overall cohort and in HR- patients. The 8-gene signature, which is validated for predicting trastuzumab benefit in the adjuvant setting, was associated with pCR in the neoadjuvant setting, but remains to be validated as a predictive marker in a larger neoadjuvant clinical trial. HR status, and the FCGR3A-158V/F genotype, also warrant further investigation to identify HER2+ patients who may benefit from additional anti-HER2 therapies beyond trastuzumab. All of these markers will require further validation in the neoadjuvant setting.

Trials registration: ClinicalTrials.gov, NCT01008150. Retrospectively registered on October 5, 2010.

Keywords: Breast cancer; Neoadjuvant; Neratinib.

Conflict of interest statement

Dr. Pérez-Garcia reports advisory roles with Roche/Lilly/MedSIR.

Dr. Cortes reports the following: consulting/advisor: Roche, Celgene, Cellestia, AstraZeneca, Biothera Pharmaceutical, Merus, Seattle Genetics Daiichi Sankyo, Erytech, and Athenex; honoraria: Roche, Novartis, Celgene, Eisai, Pfizer, and Samsung; research funding to institution: Roche, Ariad pharmaceuticals, AstraZeneca, Baxalta GMBH/Servier Affaires, Bayer Healthcare, Eisai, F.Hoffman-La Roche, Guardant health, Merck Sharp&Dohme, Pfizer, Piqur Therapeutics, Puma C, and Queen Mary University of London; and stock, patents, and intellectual property: MedSIR

Dr. Di Cosimo reports the following: Speaker’s Bureau: Novartis Pharma.

Dr. La Verde reports the following conflicts of interest: Pfizer, Eisai, Roche, Novartis, Celldex, and TEVA.

Dr. Lucas reports stock ownership in Amgen and consulting activity with Bayer/Loxo.

All other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT Diagram: NSABP FB-7 study

References

    1. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–182. doi: 10.1126/science.3798106.
    1. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792. doi: 10.1056/NEJM200103153441101.
    1. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–1684. doi: 10.1056/NEJMoa052122.
    1. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–1672. doi: 10.1056/NEJMoa052306.
    1. Slamon D, Eiermann W, Robert N, Breast Cancer International Research Group et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–1283. doi: 10.1056/NEJMoa0910383.
    1. Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8:215. doi: 10.1186/bcr1612.
    1. Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2001;2:127–137. doi: 10.1038/35052073.
    1. Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66:1630–1639. doi: 10.1158/0008-5472.CAN-05-1182.
    1. Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther. 2001;1:85–94.
    1. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–2743. doi: 10.1056/NEJMoa064320.
    1. Baselga J, Bradbury I, Eidtmann H, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomized, open-label, multicenter, phase 3 trial. Lancet 2012;379:633–40. Erratum in: Lancet 2012; 379:616.
    1. Carey LA, Berry DA, Cirrincione CT, et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol. 2016;34:542–549. doi: 10.1200/JCO.2015.62.1268.
    1. Rabindran SK, Discafani CM, Rosfjord EC, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Clin Cancer Res. 2004;64:3958–3965.
    1. Burstein HJ, Sun Y, Dirix LY, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28:1301–1307. doi: 10.1200/JCO.2009.25.8707.
    1. Chow LW, Xu B, Gupta S, et al. Combination neratinib (HKI-272) and paclitaxel therapy in patients with HER2-positive metastatic breast cancer. Br J Cancer. 2013;108:1985–1993. doi: 10.1038/bjc.2013.178.
    1. Jankowitz RC, Abraham J, Tan AR, et al. Safety and efficacy of neratinib in combination with weekly paclitaxel and trastuzumab in women with metastatic HER2-positive breast cancer: an NSABP Foundation Research Program phase 1 study. Cancer Chemother Pharmacol. 2013;72:1205–1212. doi: 10.1007/s00280-013-2262-2.
    1. Gianni L, Pienkowski T, Im Y-H, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomized multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25–32. doi: 10.1016/S1470-2045(11)70336-9.
    1. Schneeweiss A, Chia S, Hickish T, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA) Ann Oncol. 2013;24:2278–2284. doi: 10.1093/annonc/mdt182.
    1. Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med. 2018;142:1364–1382. doi: 10.5858/arpa.2018-0902-SA.
    1. Gavin PG, Song N, Kim SR, et al. Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2-positive breast cancer: analysis of the NSABP B-31 trial. JAMA Oncol. 2017;3:335–341. doi: 10.1001/jamaoncol.2016.4884.
    1. Park JW, Liu MC, Yee D, et al. I-SPY2 investigators. Adaptive randomization of neratinib in early breast cancer. N Engl J Med. 2016;375:11–22. doi: 10.1056/NEJMoa1513750.
    1. Pogue-Geile KL, Kim C, Jeong J-H, et al. Predicting degree of benefit from adjuvant trastuzumab in NSABP trial B-31. J Natl Cancer Inst. 2013;105:1782–1788. doi: 10.1093/jnci/djt321.
    1. Pogue-Geile KL, Song N, Serie DJ, Thompson EA. The NSABP/NRG 8-gene signature accurately predicts degree of benefit from trastuzumab in Alliance/NCCTG N9831: validation of the 8-gene signature in an independent clinical trial. Cancer Res. 2018;78(4 Suppl):Abstr PD3–18.
    1. Prat A, Pascual T, Adamo B. Intrinsic molecular subtypes of HER2+ breast cancer. Oncotarget. 2017;8:73362–73363. doi: 10.18632/oncotarget.20629.
    1. Prat, Aleix. HER2-enriched breast tumor subtype predicts response to HER2 dual blockade. Published by Kuznar, Wayne, in OncLive, Dec 08, 2016. Accessed 8–31-18:
    1. Robidoux A, Tang G, Rastogi P, et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomized phase 3 trial. Lancet Oncol. 2013;14:1183–1192. doi: 10.1016/S1470-2045(13)70411-X.
    1. Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1688–1700. doi: 10.1016/S1470-2045(17)30717-9.
    1. Rimawi MF F, Cecchini RS S, Rastogi P, et al. A phase III trial evaluating pCR in patients with HR+, HER2-positive breast cancer treated with neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab (TCHP) +/- estrogen deprivation: NRG Oncology/NSABP B-52. SABCS Abstr S3-06, Dec 8, 2016.
    1. Barcenas Carlos Hernando, Hurvitz Sara A., Di Palma Jack A., Bose Ron, Chan Arlene, Chien Amy Jo, Farrell Cindy, Hunt Daniel, McCulloch Leanne, Kupic Amy, Tripathy Debu, Rugo Hope S. Effect of prophylaxis on neratinib-associated diarrhea and tolerability in patients with HER2+ early-stage breast cancer: Phase II CONTROL trial. Journal of Clinical Oncology. 2019;37(15_suppl):548–548. doi: 10.1200/JCO.2019.37.15_suppl.548.
    1. Koene HR, Kleijer M, Algra J, et al. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90:1109–1114. doi: 10.1182/blood.V90.3.1109.
    1. Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100:1059–1070. doi: 10.1172/JCI119616.
    1. Pogue-Geile KL, Song N, Jeong JH, et al. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J Clin Oncol. 2015;33:1340–1347. doi: 10.1200/JCO.2014.56.2439.

Source: PubMed

3
Iratkozz fel