Pharmacokinetics and Tolerability of Intravenous Sulbactam-Durlobactam with Imipenem-Cilastatin in Hospitalized Adults with Complicated Urinary Tract Infections, Including Acute Pyelonephritis

Olexiy Sagan, Ruslan Yakubsevitch, Krassimir Yanev, Roman Fomkin, Emily Stone, Daniel Hines, John O'Donnell, Alita Miller, Robin Isaacs, Subasree Srinivasan, Olexiy Sagan, Ruslan Yakubsevitch, Krassimir Yanev, Roman Fomkin, Emily Stone, Daniel Hines, John O'Donnell, Alita Miller, Robin Isaacs, Subasree Srinivasan

Abstract

Durlobactam (DUR; ETX2514) is a novel β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C, and D β-lactamases. Durlobactam restores the in vitro activity of sulbactam (SUL) against members of the Acinetobacter baumannii-A. calcoaceticus complex (ABC). Sulbactam (SUL)-durlobactam (SUL-DUR) is under development for the treatment of ABC infections. Eighty patients with complicated urinary tract infection (cUTI), including acute pyelonephritis (AP), were randomized 2:1 to receive SUL-DUR at 1 g/1 g intravenously (i.v.) or placebo every 6 h (q6h) for 7 days and background therapy with imipenem-cilastatin (IMI) at 500 mg i.v. q6h to evaluate the tolerability of SUL-DUR in hospitalized patients. Patients with bacteremia could receive up to 14 days of therapy. SUL-DUR tolerability and the values of various pharmacokinetic (PK) parameters were determined. Efficacy was recorded at the test-of-cure (TOC) visit. SUL-DUR was well tolerated, with no serious adverse events (AEs) being reported. Headache (5.7%), nausea (3.8%), diarrhea (3.8%), and vascular pain (3.8%) were the most common drug-related AEs with SUL-DUR and were mostly of mild or moderate severity. The PK profile of DUR and SUL in hospitalized patients was consistent with observations in healthy volunteers. Overall success in the microbiological modified intent-to-treat (m-MITT) population was similar between the groups, as would be expected with IMI background therapy in all patients (overall success at the TOC visit, 76.6% [n = 36] with SUL-DUR and 81.0% [n = 17] with placebo). SUL-DUR in combination with IMI was well tolerated in patients with cUTIs. The pharmacokinetics of SUL-DUR observed in hospitalized patients was similar to that observed in healthy volunteers. (This study has been registered at ClinicalTrials.gov under identifier NCT03445195.).

Keywords: acute pyelonephritis; durlobactam; sulbactam; urinary tract infection.

Copyright © 2020 Sagan et al.

Figures

FIG 1
FIG 1
Mean (standard deviation) steady-state (day 4) plasma concentrations of durlobactam and sulbactam over a 6-h dosing interval.

References

    1. European Center for Disease Prevention and Control. 2016. Summary of the latest data on antibiotic resistance in the European Union. . Accessed 5 June 2018.
    1. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta, GA: .
    1. World Health Organization. 2017. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Report WHO/EMP/IAU/2017.12. World Health Organization, Geneva, Switzerland.
    1. Cai B, Echols R, Magee G, Ferreira JCA, Morgan G, Ariyasu M, Sawada T, Nagata TD. 2017. Prevalence of carbapenem-resistant Gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis 4:ofx176. doi:10.1093/ofid/ofx176.
    1. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities . 2013. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14. doi:10.1086/668770.
    1. Bulens SN, Yi SH, Walters MS, Jacob JT, Bower C, Reno J, Wilson L, Vaeth E, Bamberg W, Janelle SJ, Lynfield R, Vagnone PS, Shaw K, Kainer M, Muleta D, Mounsey J, Dumyati G, Concannon C, Beldavs Z, Cassidy PM, Phipps EC, Kenslow N, Hancock EB, Kallen AJ. 2018. Carbapenem-nonsusceptible Acinetobacter baumannii, 8 US metropolitan areas, 2012–2015. Emerg Infect Dis 24:727–734. doi:10.3201/eid2404.171461.
    1. Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. 2019. Antimicrobial susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect Dis 6:S34–S46. doi:10.1093/ofid/ofy293.
    1. Lynch JP III, Zhanel GG, Clark NM. 2017. Infections due to Acinetobacter baumannii in the ICU: treatment options. Semin Respir Crit Care Med 38:311–325. doi:10.1055/s-0037-1599225.
    1. Clark NM, Zhanel GG, Lynch JP. 2016. Emergence of antimicrobial resistance among Acinetobacter species: a global threat. Curr Opin Crit Care 22:491–499. doi:10.1097/MCC.0000000000000337.
    1. Lemos EV, de la Hoz FP, Einarson TR, McGhan WF, Quevedo E, Castañeda C, Kawai K. 2014. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 20:416–423. doi:10.1111/1469-0691.12363.
    1. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30:409–447. doi:10.1128/CMR.00058-16.
    1. Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. 2016. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit Care 20:221. doi:10.1186/s13054-016-1392-4.
    1. Cheng A, Chuang YC, Sun HY, Sheng WH, Yang CJ, Liao CH, Hsueh PR, Yang JL, Shen NJ, Wang JT, Hung CC, Chen YC, Chang SC. 2015. Excess mortality associated with colistin tigecycline compared with colistin-carbapenem combination therapy for extensively drug-resistant Acinetobacter baumannii bacteremia: a multicenter prospective observational study. Crit Care Med 43:1194–1204. doi:10.1097/CCM.0000000000000933.
    1. Spellberg B, Bonomo RA. 2015. Combination therapy for extreme drug-resistant (XDR) Acinetobacter baumannii: ready for prime-time? Crit Care Med 43:1332–1334. doi:10.1097/CCM.0000000000001029.
    1. Zilberberg MD, Kollef MH, Shorr AF. 2016. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: a survey study. J Hosp Med 11:21–26. doi:10.1002/jhm.2477.
    1. Barnes MD, Kumar V, Bethel CR, Moussa SH, O’Donnell J, Rutter JD, Good CE, Hujer KM, Hujer AM, Marshall SH, Kreiswirth BN, Richter SS, Rather PN, Jacobs MR, Papp-Wallace KM, van den Akker F, Bonomo RA. 2019. Targeting multidrug-resistant Acinetobacter spp.: sulbactam and the diazabicyclooctenone β-lactamase inhibitor ETX2514 as a novel therapeutic agent. mBio 10:e00159-19. doi:10.1128/mBio.00159-19.
    1. Durand-Réville TF, Guler S, Comita-Prevoir J, Chen B, Bifulco N, Huynh H, Lahiri S, Shapiro AB, McLeod SM, Carter NM, Moussa SH, Velez-Vega C, Olivier NB, McLaughlin R, Gao N, Thresher J, Palmer T, Andrews B, Giacobbe RA, Newman JV, Ehmann DE, de Jonge B, O'Donnell J, Mueller JP, Tommasi RA, Miller AA. 2017. ETX2514 is a broad-spectrum beta-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol 2:17104. doi:10.1038/nmicrobiol.2017.104.
    1. Shapiro AB, Gao N, Jahic H, Carter NM, Chen A, Miller AA. 2017. Reversibility of covalent, broad-spectrum serine beta-lactamase inhibition by the diazabicyclooctenone ETX2514. ACS Infect Dis 3:833–844. doi:10.1021/acsinfecdis.7b00113.
    1. McLeod SM, Roth B, Flamm R, Huband M, Mueller J, Tommasi R, Perros M, Miller A. 2017. The antibacterial activity of sulbactam and the novel beta-lactamase inhibitor ETX2514 combined with imipenem or meropenem against recent clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa, abstr Friday-82. Abstr ASM Microbe. American Society for Microbiology, Washington, DC.
    1. McLeod SM, Shapiro AB, Moussa SH, Johnstone M, McLaughlin RE, de Jonge BLM, Miller AA. 2018. Frequency and mechanism of spontaneous resistance to sulbactam combined with the novel beta-lactamase inhibitor ETX2514 in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 62:e01576-17. doi:10.1128/AAC.01576-17.
    1. McLeod SM, Moussa S, Hackel M, Tommasi R, Miller A. 2019. The novel beta-lactamase inhibitor ETX2514 effectively restores sulbactam activity against recent global Acinetobacter baumannii-calcoaceticus complex clinical isolates, abstr P1185. Abstr 29th Eur Congr Clin Microbiol Infect Dis.
    1. Seifert H, Stefanik D, Muller C, Kresken M, Higgins PG, Miller A. 2019. The susceptibility of global isolates of Acinetobacter baumannii to ETX2514SUL and comparators, abstr P1186. Abstr 29th Eur Congr Clin Microbiol Infect Dis.
    1. Lickliter J, Lawrence K, O’Donnell J, Isaacs R. 2017. Safety and pharmacokinetics (PK) in humans of intravenous ETX2514, a β-lactamase inhibitor (BLI) which broadly inhibits Amber class A, C, and D β-lactamases. Open Forum Infect Dis 4:S524. doi:10.1093/ofid/ofx163.1366.
    1. O’Donnell D, Preston RA, Mamikonyan G, Stone E, Isaacs R. 2019. Pharmacokinetics, safety, and tolerability of intravenous ETX2514 and sulbactam in subjects with renal impairment and healthy matched control subjects. Antimicrob Agents Chemother 63:e00794-19. doi:10.1128/AAC.00794-19.
    1. Rodvold KA, Gotfried MH, Isaacs RD, O'Donnell JP, Stone E, Rodvold KA, Gotfried MH, Isaacs RD, O'Donnell JP, Stone E. 2018. Plasma and intrapulmonary concentrations of ETX2514 and sulbactam following intravenous administration of ETX2514SUL to healthy adult subjects. Antimicrob Agents Chemother 62:e01089-18. doi:10.1128/AAC.01089-18.
    1. Onufrak NJ, Rubino CM, Ambrose PG, Isaacs R, Srinivasan S, O’Donnell J. 2019. Population pharmacokinetic and pharmacokinetic-pharmacodynamic target attainment analyses of ETX2514SUL to support dosing regimens in patients with varying renal function, poster P1953. Abstr 29th Eur Congr Clin Microbiol Infect Dis.
    1. Du X, Xu X, Yao J, Deng K, Chen S, Shen Z, Yang L, Feng G. 2019. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Am J Infect Control 16:1140–1145. doi:10.1016/j.ajic.2019.03.003.
    1. Paul M, Daikos GL, Durante-Mangoni E, Yahav D, Carmeli Y, Benattar YD, Skiada A, Andini R, Eliakim-Raz N, Nutman A, Zusman O, Antoniadou A, Pafundi PC, Adler A, Dickstein Y, Pavleas I, Zampino R, Daitch V, Bitterman R, Zayyad H, Koppel F, Levi I, Babich T, Friberg LE, Mouton JW, Theuretzbacher U, Leibovici L. 2018. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis 18:391–400. doi:10.1016/S1473-3099(18)30099-9.

Source: PubMed

3
Iratkozz fel