Towards a consensus regarding global signal regression for resting state functional connectivity MRI

Kevin Murphy, Michael D Fox, Kevin Murphy, Michael D Fox

Abstract

The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single "right" way to process resting state data that reveals the "true" nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation.

Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

References

    1. Aguirre G.K., Zarahn E., D'Esposito M. The inferential impact of global signal covariates in functional neuroimaging analyses. NeuroImage. 1998;8:302–306.
    1. Andellini M., Cannatà V., Gazzellini S., Bernardi B., Napolitano A. Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review. J. Neurosci. Methods. 2015;253:183–192.
    1. Anderson J.S., Druzgal T.J., Lopez-Larson M., Jeong E.K., Desai K., Yurgelun-Todd D. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum. Brain Mapp. 2010;32:919–934.
    1. Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37:90–101.
    1. Birn R.M. The role of physiological noise in resting-state functional connectivity. NeuroImage. 2012;62:864–870.
    1. Birn R.M., Diamond J.B., Smith M.A., Bandettini P.A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage. 2006;31:1536–1548.
    1. Boes A.D., Prasad S., Liu H., Liu Q., Pascual-Leone A., Caviness V.S., Fox M.D. Network localization of neurological symptoms from focal brain lesions. Brain. 2015;138:3061–3075.
    1. Borchardt V., Lord A.R., Li M., van der Meer J., Heinze H.J., Bogerts B., Breakspear M., Walter M. Preprocessing strategy influences graph-based exploration of altered functional networks in major depression. Hum. Brain Mapp. 2016;37:1422–1442.
    1. Braun U., Plichta M.M., Esslinger C., Sauer C., Haddad L., Grimm O., Mier D., Mohnke S., Heinz A., Erk S., Walter H., Seiferth N., Kirsch P., Meyer-Lindenberg A. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. NeuroImage. 2011;59:1404–1412.
    1. Carbonell F., Bellec P., Shmuel A. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state. NeuroImage. 2013;86:343–353.
    1. Chai X.J., Castanan A.N., Ongur D., Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. NeuroImage. 2011;59:1420–1428.
    1. Chang C., Glover G.H. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. NeuroImage. 2009;47:1448–1459.
    1. Chen G., Xie C., Ward B.D., Li W., Antuono P., Li S.J. A method to determine the necessity for global signal regression in resting-state fMRI studies. Magn. Reson. Med. 2012;68:1828–1835.
    1. Chen T., Ryali S., Qin S., Menon V. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts. NeuroImage. 2013;82:87–100.
    1. Driver I., Whittaker J.R., Bright M.G., Murphy K. Arterial CO2 fluctuations modulate neuronal rhythmicity: implications for MEG and fMRI studies of resting state networks. J. Neurosci. 2016 (in press)
    1. Falahpour M., Refai H., Bodurka J. Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal. NeuroImage. 2013;72:252–264.
    1. Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA. 2005;102:9673–9678.
    1. Fox M.D., Zhang D., Snyder A.Z., Raichle M.E. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 2009;101:3270–3283.
    1. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005;26:15–29.
    1. Friston K.J., Williams S., Howard R., Frackowiak R.S., Turner R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 1996;35:346–355.
    1. Glover G.H., Li T.Q., Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor. Magn. Reson. Med. 2000;44:162–167.
    1. Gorgolewski K.J., Storkey A.J., Bastin M.E., Pernet C.R. Adaptive thresholding for reliable topological inference in single subject fMRI analysis. Front. Hum. Neurosci. 2012
    1. Gotts S.J., Saad Z.S., Jo H.J., Wallace G.L., Cox R.W., Martin A. The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders. Front. Hum. Neurosci. 2013
    1. Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA. 2003;100:253–258.
    1. Griffanti L., Salimi-Khorshidi G., Beckmann C.F., Auerbach E.J., Douaud G., Sexton C.E., Zsoldos E., Ebmeier K.P., Filippini N., Mackay C.E., Moeller S., Xu J., Yacoub E., Baselli G., Ugurbil K., Miller K.L., Smith S.M. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage. 2014;95:232–247.
    1. Guo C.C., Kurth F., Zhou J., Mayer E.A., Eickhoff S.B., Kramer J.H., Seeley W.W. One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. NeuroImage. 2012;61:1471–1483.
    1. Hampson M., Driesen N., Roth J.K., Gore J.C., Constable R.T. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn. Reson. Imaging. 2010;28:1051–1057.
    1. He H., Liu T.T. A geometric view of global signal confounds in resting-state functional MRI. NeuroImage. 2011;59:2339–2348.
    1. Ibinson J.W., Vogt K.M., Taylor K.B., Dua S.B., Becker C.J., Loggia M., Wasan A.D. Optimizing and interpreting insular functional connectivity maps obtained during acute experimental pain: the effects of global signal and task paradigm regression. Brain Connect. 2015;5:649–657.
    1. Jo H.J., Gotts S.J., Reynolds R.C., Bandettini P.A., Martin A., Cox R.W., Saad Z.S. Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J. Appl. Math. 2013
    1. Keller C.J., Bickel S., Honey C.J., Groppe D.M., Entz L., Craddock R.C., Lado F.A., Kelly C., Milham M., Mehta A.D. Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. J. Neurosci. 2013;33:6333–6342.
    1. Kruschwitz J.D., Meyer-Lindenberg A., Veer I.M., Wackerhagen C., Erk S., Mohnke S., Pöhland L., Haddad L., Grimm O., Tost H., Romanczuk-Seiferth N., Heinz A., Walter M., Walter H. Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity. Human. Brain Mapp. 2015;36:4089–4103.
    1. Langfelder P., Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 2007;1:54.
    1. Liang X., Wang J., Yan C., Shu N., Xu K., Gong G., He Y. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study. PLoS One. 2012;7
    1. Liang Z., King J., Zhang N. Anticorrelated resting-state functional connectivity in awake rat brain. NeuroImage. 2011;59:1190–1199.
    1. Macey P.M., Macey K.E., Kumar R., Harper R.M. A method for removal of global effects from fMRI time series. NeuroImage. 2004;22:360–366.
    1. Marx M., Pauly K.B., Chang C. A novel approach for global noise reduction in resting-state fMRI: applecor. NeuroImage. 2012;64:19–31.
    1. Murphy K., Birn R.M., Bandettini P.A. Resting-state fMRI confounds and cleanup. NeuroImage. 2013;80:349–359.
    1. Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage. 2009;44:893–905.
    1. Perlbarg V., Bellec P., Anton J.L., Pelegrini-Issac M., Doyon J., Benali H. CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. Magn. Reson Imaging. 2007;25:35–46.
    1. Power J.D., Mitra A., Laumann T.O., Snyder A.Z., Schlaggar B.L., Petersen S.E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014;84:320–341.
    1. Qing Z., Dong Z., Li S., Zang Y., Liu D. Global signal regression has complex effects on regional homogeneity of resting state fMRI signal. Magn. Reson. Imaging. 2013;33:1306–1313.
    1. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA. 2001;98:676–682.
    1. Saad Z.S., Gotts S.J., Murphy K., Chen G., Jo H.J., Martin A., Cox R.W. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2:25–32.
    1. Schoelvinck M.L., Maier A., Ye F.Q., Duyn J.H., Leopold D.A. Neural basis of global resting-state fMRI activity. Proc. Natl. Acad. Sci. USA. 2010;107:10238–10243.
    1. Schwarz A.J., McGonigle J. Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data. NeuroImage. 2010;55:1132–1146.
    1. Shmueli K., van Gelderen P., de Zwart J.A., Horovitz S.G., Fukunaga M., Jansma J.M., Duyn J.H. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage. 2007;38:306–320.
    1. Sinclair B., Hansell N.K., Blokland G.A.M., Martin N.G., Thompson P.M., Breakspear M., de Zubicaray G.I., Wright M.J., McMahon K.L. Heritability of the network architecture of intrinsic brain functional connectivity. NeuroImage. 2015;121:243–252.
    1. Song J., Desphande A.S., Meier T.B., Tudorascu D.L., Vergun S., Nair V.A., Biswal B.B., Meyerand M.E., Birn R.M., Bellec P., Prabhakaran V. Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One. 2012:7.
    1. Spisak T., Jakab A., Kis S.A., Opposits G., Aranyi C., Beranyi E., Emri M. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI. PLoS One. 2014;9
    1. Wang Z. Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations. Magn. Reson. Imaging. 2012;30:1409–1415.
    1. Weissenbacher A., Kasess C., Gerstl F., Lanzenberger R., Moser E., Windischberger C. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage. 2009;47:1408–1416.
    1. Wise R.G., Ide K., Poulin M.J., Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage. 2004;21:1652–1664.
    1. Wong C.W., DeYoung P.N., Liu T.T. Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance. NeuroImage. 2015;124:24–31.
    1. Wong C.W., Olafsson V., Tal O., Liu T.T. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. NeuroImage. 2012;63:356–364.
    1. Wong C.W., Olafsson V., Tal O., Liu T.T. The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. NeuroImage. 2013;83:983–990.
    1. Yan C.G., Cheung B., Kelly C., Colcombe S., Craddock R.C., Di Martino A., Li Q., Zuo X.N., Castellanos F.X., Milham M.P. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage. 2013;76:183–201.
    1. Zarahn E., Aguirre G.K., D'Esposito M. Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. NeuroImage. 1997;5:179–197.
    1. Zhang D., Snyder A.Z., Fox M.D., Sansbury M.W., Shimony J.S., Raichle M. Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 2008;100:1740–1748.
    1. Zhu D.C., Tarumi T., Khan M.A., Zhang R. Vascular coupling in resting-state fMRI: evidence from multiple modalities. J. Cereb. Blood Flow. Metab. 2015;35:1910–1920.
    1. Zhu L., Fan Y., Zou Q., Wang J., Gao J.H., Niu Z. Temporal reliability and lateralization of the resting-state language network. PLoS One. 2014;9
    1. Zuo X.N., Xu T., Jiang L., Yang Z., Cao X.Y., He Y., Zang Y.F., Castellanos F.X., Milham M.P. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage. 2012;65:374–386.

Source: PubMed

3
Iratkozz fel